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Reduction (Simplification) of Boolean
Expressions

• It is usually possible to simplify the canonical SOP (or POS)
forms.

•  A smaller Boolean equation generally translates to a lower gate
count in the target circuit.

•  We cover three methods: algebraic reduction, Karnaugh map re-
duction, and tabular (Quine-McCluskey) reduction.
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Reduced Majority Function Circuit
• Compared with the AND-OR circuit for the unreduced majority

function, the inverter for C has been eliminated, one AND gate has
been eliminated, and one AND gate has only two inputs instead of
three inputs.  Can the function by reduced further? How do we go
about it?
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The Algebraic Method
• Consider the majority function, F.  We apply the algebraic method

to reduce F to its minimal two-level form:
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The Algebraic Method
• This majority circuit is functionally equivalent to the previous ma-

jority circuit, but this one is in its minimal two-level form:

F
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Karnaugh Maps: Venn Diagram Rep-
resentation of Majority Function

• Each distinct region in the “Universe” represents a minterm.

•  This diagram can be transformed into a Karnaugh Map .
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K-Map for Majority Function
• Place a “1” in each cell that corresponds to that minterm.

•  Cells on the outer edge of the map “wrap around”

A B C FMinterm
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Adjacency Groupings for Majority
Function

• F = BC + AC + AB
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Minimized AND-OR Majority Circuit

• F = BC + AC + AB

• The K-map approach yields the same minimal two-level form as
the algebraic approach.

F
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K-Map Groupings
• Minimal grouping is on the left, non-minimal (but logically equiva-

lent) grouping is on the right.

• To obtain minimal grouping, create smallest groups first.
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K-Map Corners are Logically Adjacent
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K-Maps and Don’t Cares
• There can be more than one minimal grouping, as a result of

don’t cares.
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Five-Variable K-Map
• Visualize two 4-variable K-maps stacked one on top of the other;

groupings are made in three dimensional cubes.
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Six-Variable K-Map
• Visualize four 4-variable K-maps stacked one on top of the other;

groupings are made in three dimensional cubes.
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3-Level Majority Circuit
• K-Kap Reduction results in a reduced two-level circuit (that is,

AND followed by OR.  Inverters are not included in the two-level
count). Algebraic reduction can result in multi-level circuits with
even fewer logic gates and fewer inputs to the logic gates.

M
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Map-Entered Variables
• An example of a K-map with a map-entered variable D.
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Two Map-Entered Variables
• A K-map with two map-entered variables D and E.

• F = BC + ACD + BE + ABCE
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Truth Table with Don’t Cares

• A truth table repre-
sentation of a single
function with don’t
cares.
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Tabular (Quine-McCluskey) Reduction
• Tabular reduction be-

gins by grouping
minterms for which F
is nonzero according
to the number of 1’s in
each minterm. Don’t
cares are considered
to be nonzero.

• The next step forms a
consensus (the logical
form of a cross prod-
uct) between each pair
of adjacent groups for
all terms that differ in
only one variable.
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Table of Choice
• The prime implicants form a set that completely covers the func-

tion, although not necessarily minimally.

• A table of choice is used to obtain a minimal cover set.
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Reduced Table of Choice
• In a reduced table of choice, the essential prime implicants and

the minterms they cover are removed, producing the eligible set .

• F = ABC + ABC + BD + AD
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Multiple Output Truth Table
• The power of tabular reduction comes into play for multiple func-

tions, in which minterms can be shared among the functions.
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Multiple Output Table of Choice
F0(A,B,C) = ABC + BC

F1(A,B,C) = AC + AC + BC

F2(A,B,C) = B
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Speed and Performance

• The speed of a digital system is governed by:
• the propagation delay through the logic gates and
• the propagation delay across interconnections.

• We will look at characterizing the delay for a logic gate, and a
method of reducing circuit depth using function decomposition.
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Propagation Delay for a NOT Gate
• (From Hamacher et. al.  1990)
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MUX Decomposition
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OR-Gate Decomposition
• Fanin affects circuit depth.

A + B + C + D

A BCD

Associative law of Boolean algebra:

Initial high fan-in gate

Balanced tree

A B CD

(A +  B) + (C +  D)

Degenerate tree

A B C D

A  +   B  +   C  +   D  =   (A +  B)  +   (C +  D) ((A + B) + C) + D
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State Reduction
• Description of state machine M0 to be reduced.

X

0 1

A C/0 E/1

Present state

Input

B

C

D

E

D/0 E/1

C/1 B/0

C/1 A/0

A/0 C/1
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Distinguishing Tree
• A next state tree for M0.

(ABCDE)
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Reduced State Table
• A reduced state table for machine M1.

X

0 1

AB: A' B'/0 C'/1

Current state

Input

CD: B'

E: C'

B'/1 A'/0

A'/0 B'/1
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The State Assignment Problem
• Two state assignments for machine M2.

P.S.

Input X

0 1

A B/1 A/1

B C/0 D/1

C C/0 D/0

D B/1 A/0

Machine M2

Input X

0 1

A: 00 01/1 00/1

B: 01 10/0 11/1

C: 10 10/0 11/0

D: 11 01/1 00/0

State assignment SA0

S0S1

Input X

0 1

A: 00 01/1 00/1

B: 01 11/0 10/1

C: 11 11/0 10/0

D: 10 01/1 00/0

State assignment SA1

S0S1
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State Assignment SA 0
• Boolean equations for machine M2 using state assignment SA 0.
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State Assignment SA 1
• Boolean equations for machine M2 using state assignment SA 1.
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Sequence Detector State Transition
Diagram

A

B
0/0

1/0

C

D

E

F

G

0/0

1/0

0/0

1/0

0/0

1/0

1/0

1/1

0/01/1

0/0

0/1

Input: 0 1 1 0 1 1 1 0 0

Output: 0 0 1 1 1 1 0 1 0

Time: 0 1 2 3 4 5 6 7 8
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Sequence Detector State Table

X
0 1

A B/0 C/0

Present state

Input

B
C
D
E

D/0 E/0
F/0 G/0
D/0 E/0
F/0 G/1

F D/0 E/1
G F/1 G/0
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Sequence Detector Reduced State
Table

X
0 1

B'/0 C'/0

Present state

Input

B'/0 D'/0
E'/0 F'/0
E'/0 F'/1
B'/0 D'/1
E'/1 F'/0

A: A'
BD: B'

C: C'
E: D'
F: E'
G: F'



Appendix B: Reduction of Digital LogicB-38

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Assignment

X
0 1

A':  000 001/0 010/0

Present state

Input

B':  001
C':  010
D':  011
E':  100

001/0 011/0
100/0 101/0
100/0 101/1
001/0 011/1

F':  101 100/1 101/0

S2S1S0 S2S1S0Z S2S1S0Z
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Excitation Tables
• In addition to the D flip-flop, the S-R, J-K, and T flip-flops are used

as delay elements in finite state machines.

•  A Master-Slave J-K flip-flop is shown below.
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Q
J

CLK
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Q

Q

K

Circuit
Symbol

K
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Sequence Detector K-Maps

• K-map re-
duction of
next state
and output
functions for
sequence
detector.
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Clocked T Flip-Flop
• Logic diagram and symbol for a T flip-flop.
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Q
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K

Circuit

Q

Q
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T T
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Sequence
Detector
Circuit
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Q
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Q
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Q
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Excitation Tables
• Each table

shows the set-
tings that must
be applied at the
inputs at time t
in order to
change the out-
puts at time t+1.
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Serial Adder

Serial
Adder

0 1 1 0 0

0 1 1 1 0

1 1 0 1 0X
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B:1 0/1 1/0 1/0 1/1

Present state

Input XY

00 01 10 11

A A/0 A/1 A/1 B/0

B A/1 B/0 B/0 B/1

Next state Output

• State transi-
tion diagram,
state table,
and state as-
signment for
a serial adder.
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Serial Adder Next-State Functions
• Truth table showing next-state functions for a serial adder for D,

S-R, T, and J-K flip-flops. Shaded functions are used in the ex-
ample.

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Y St

0
0
0
0
1
1
1
1

X

0
0
0
1
0
1
1
1

D

0
0
0
0
0
0
1
0

S

0
1
0
0
0
0
0
0

R

0
d
0
d
0
d
1
d

J

d
1
d
0
d
0
d
0

K

0
1
0
0
0
0
1
0

T

0
1
1
0
1
0
0
1

Z

Present 
State (Set) (Reset)



Appendix B: Reduction of Digital LogicB-46

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

J-K Flip-Flop Serial Adder Circuit

CLK
QJ

X

Y

Q

X
Y

Y

X

Z

S
KX

Y
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D Flip-Flop Serial Adder Circuit

CLK

QD

X

Y

Q

X
Y

Y

X

Z

S

X

Y
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Majority Finite State Machine

A

0/0

B

C

D

E

F

G0/1

1/0

1/1

0/0

1/0

0/0

1/0

0/0

1/0

0/0 1/1

0/0 1/1

Input: 0 1 1 1 0 0 1 0 1

Output: 0 0 1 0 0 0 0 0 1

Time: 0 1 2 3 4 5 6 7 8

Input History _ _ _
0 _ _

1 _ _

0 0 _

0 1 _

1 0 _

1 1 _
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Majority FSM State Table
• (a) State table for majority FSM; (b) partitioning; (c) reduced state

table.

X
0 1

A B/0 C/0

P.S.

Input

B
C
D
E

D/0 E/0
F/0 G/0
A/0 A/0
A/0 A/1

F A/0 A/1
G A/1 A/1

(a)

X
0 1

B'/0 C'/0
D'/0 E'/0
E'/0 F'/0
A'/0 A'/0
A'/0 A'/1
A'/1 A'/

1

A: A'
B: B'
C: C'
D: D'

EF: E'
G: F'

(c)

P0 = (ABCDEFG)
P1 = (ABCD)(EF)(G)
P2 = (AD)(B)(C)(EF)(G)
P3 = (A)(B)(C)(D)(EF)(G)
P4 = (A)(B)(C)(D)(EF)(G) √

P.S.

Input

(b)
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Majority FSM State Assignment
• (a) State assignment for reduced majority FSM using D flip-flops;

and (b) using T flip-flops.

X
0 1

A':  000 001/0 010/0

P.S.

Input

B':  001
C':  010
D':  011
E':  100

011/0 100/0
100/0 101/0
000/0 000/0
000/0 000/1

F':  101 000/1 000/1

S2S1S0 S2S1S0Z S2S1S0Z

X
0 1

A':  000 001/0 010/0

P.S.

Input

B':  001
C':  010
D':  011
E':  100

000/0 010/0
110/0 111/0
011/0 011/0
100/0 100/1

F':  101 101/1 101/1

S2S1S0 T2T1T0Z T2T1T0Z

(a) (b)
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Majority FSM Circuit
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T
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0

0

0
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Q
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0

0

000

001

010

011

100

101

110

111

0

0

0

0

x

1

0

0

Z

x0

xx

CLK

x


