Warning:
JavaScript is turned OFF. None of the links on this page will work until it is reactivated.
If you need help turning JavaScript On, click here.
This Concept Map has information related to: Ratio and Proportion, Ratio and Proportion resource Flash Ratio and Proportion Problem Walk throughs on the web (has audio), 3 unknowns spoken these read like reds varied directly as blues aquared and inversely as greens. When there are 80 reds there were 4 blues and 2 greens. How many reds were there when there were 8 blues and ten greens., Ratio Method ???? <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mfrac> <mmultiscripts> <mtext> R </mtext> <mtext> 1 </mtext> <none/> </mmultiscripts> <mmultiscripts> <mtext> R </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> </mfrac> <mtext> = </mtext> <mfrac> <mmultiscripts> <mmultiscripts> <mtext> B </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> <none/> <mtext> 2 </mtext> </mmultiscripts> <mmultiscripts> <mmultiscripts> <mtext> B </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> <none/> <mtext> 2 </mtext> </mmultiscripts> </mfrac> <mtext> ∗ </mtext> <mfrac> <mmultiscripts> <mtext> G </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> <mmultiscripts> <mtext> G </mtext> <mtext> 1 </mtext> <none/> </mmultiscripts> </mfrac> </mrow> </math>, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> transformations
to solve for </mtext> <mmultiscripts> <mtext> R </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> </mrow> </math> answer <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> R </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> <mtext> = 64 </mtext> </mrow> </math>, simplify solve by cross-multiplying <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> transformations
to solve for </mtext> <mmultiscripts> <mtext> R </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> </mrow> </math>, Same problem. . . two methods called Variation Methods, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mfrac> <mtext> 1 </mtext> <mtext> 2 </mtext> </mfrac> <mtext> = </mtext> <mfrac> <mtext> x </mtext> <mtext> 10 </mtext> </mfrac> <mtext> : a proportion: equal ratios </mtext> </mrow> </math> EQ Why are equivalent fractions proportional?, simplify solve by cross-multiplying <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> 80∗128 = </mtext> <mmultiscripts> <mtext> R </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> <mtext> ∗160 </mtext> </mrow> </math>, Proportional Reasoning applications Scale Drawings, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mfrac> <mmultiscripts> <mtext> R </mtext> <mtext> 1 </mtext> <none/> </mmultiscripts> <mmultiscripts> <mtext> R </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> </mfrac> <mtext> = </mtext> <mfrac> <mmultiscripts> <mmultiscripts> <mtext> B </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> <none/> <mtext> 2 </mtext> </mmultiscripts> <mmultiscripts> <mmultiscripts> <mtext> B </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> <none/> <mtext> 2 </mtext> </mmultiscripts> </mfrac> <mtext> ∗ </mtext> <mfrac> <mmultiscripts> <mtext> G </mtext> <mtext> 2 </mtext> <none/> </mmultiscripts> <mmultiscripts> <mtext> G </mtext> <mtext> 1 </mtext> <none/> </mmultiscripts> </mfrac> </mrow> </math> In this method you plug in numbers from both 1st and 2nd scenarios - indicated by the subscripts simplify