
ECE 501- Project in lieu of thesis
VIKAS YELAGONDANAHALLI

Summer 2007

Advisor: Dr. Don Bouldin
Electrical and Computer Engineering

University of Tennessee, Knoxville

Date: 07/19/07

1

Implementation of a Simulink Design on an
ASIC using the IBM7RF 180nm process.

Using the Xilinx System Generator (Sysgen)
tool to generate the HDL Code.

To implement the Simulink design on an ASIC, there are several steps that need to
be followed. The Xilinx Sysgen tool is used to generate a VHDL code from the
Simulink Design. This code, which uses Xilinx Core Libraries has to be modified to a
generic VHDL code which can be used on any platform. The Generic VHDL code is
then synthesized using Synopsys Design Compiler and then implemented on an
ASIC using the IBM 405-S PPC core as the CPU.

2

Simulink Model

Xilinx VHDL
Code

Placement
and Routing

Synthesis using
XST/Synplify Pro

FPGA

Simulation
- Modelsim

Xilinx Sysgen

Xilinx
Coregen

The Simulink Model can be targeted onto an FPGA using the provided flowchart.
Once the Simulink model is developed in Matlab, the System Generator tool
generates the VHDL code equivalent of the design and targets a particular family of
Xilinx FPGAs. This VHDL code is then simulated after compiling the Xilinx Libraries.
If Simulator results are satisfactory, the design is synthesized using Xilinx XST or
Synplify Pro, and PAR is performed on the synthesized design before implementing
the design on the FPGA .

Modelsim by default does not have the Xilinx core libraries installed. These libraries,
namely Unisim, Simprim and XilinxCoreLib have to compiled and mapped so that
their paths are added in the modelsim.ini file. The following link provides some
information about installing these libraries:
http://www.xilinx.com/xlnx/xil_ans_display.jsp?getPagePath=15338

3

VHDL Code of
Design + CPU

JupiterXT -
Floorplanning

Logic Synthesis using
Synopsys Design

Compiler

Routing by
Astro

Physical Compiler –
Placement &

Synthesis

ASIC

In the design flow of an ASIC, we take the VHDL Code along with a CPU core, like
Leon or IBM 405-S PPC and perform synthesis using Synopsys Design Compiler.
The JupiterXT tool by Synopsys is used for performing Placement, followed by
Routing by Astro. Finally, the layout is implemented onto an ASIC.

4

Simulink Model

Xilinx VHDL
Code

Conversion
Tool

Generic
VHDL Code

CPU Core

Logic Synthesis
using Synopsys

Design Compiler

FPGA Flow

ASIC Flow

When performing Synthesis with Synopsys DC, some of the Xilinx specific
components are not synthesized as they are not recognized by Synopsys. To fix
this problem, the Xilinx specific code has to be converted to a generic VHDL code
which can be used by any tool. Currently, I am working on this tool to automate the
process of converting Xilinx specific VHDL to Generic VHDL.

5

System Generator tool is used for designing
high performance DSP systems for Xilinx
FPGAs.
Is provided as a plug-in to Simulink in
Matlab.
Generates synthesizable VHDL code which are
mapped to Xilinx pre-optimized algorithms.

The Xilinx System Generator tool enables designers to develop DSP systems for
Xilinx FPGAs. Designers can design and simulate a system using MATLAB,
Simulink, and Xilinx library of bit/cycle-true models. The generated HDL design can
be synthesized for implementation in Virtex Platform FPGAs and Spartan family
FPGAs. As a result, designers can define an abstract representation of a system-
level design and easily transform this single source code into a gate-level
representation. Additionally, it provides automatic generation of a HDL testbench,
which enables design verification upon implementation.

6

SynplifyDSP: A synthesis tool by Synplicity that
performs high level DSP optimizations from a
Simulink model.
◦ Very expensive.

AccelDSP: Matlab language based tool for
designing DSP blocks for FPGAs and ASICs.
◦ Does not use Simulink models but uses Matlab ‘m’ files.

Insecta Project by University of Berkeley.
◦ http://bwrc.eecs.berkeley.edu/Research/Insecta/default.htm
◦ License Restrictions

In SynplifyDSP, the implementations are synthesizable and not vendor dependent
like Sysgen. But since the cost of SynplifyDSP is very high (around $18000
compared to $2000 for Sysgen), the idea had to be dropped.
For AccelDSP, though ASICs could be implemented from different vendors, it could
not be pursued since the input file was a Matlab ‘m’ file, and there are no tools to
convert Simulink models to Matlab ‘m’ files.
The Insecta project by Berkeley also uses Sysgen to convert Simulink models to
synthesizable HDL and has developed a tool to convert Xilinx specific VHDL to
generic VHDL. We are trying to implement the same thing but could not use the
Berkeley model due to license restrictions.

7

2 Designs were created in Simulink using
System Generator and implemented on an
FPGA.
The 1st Design is an Up/Down Counter and
the 2nd design is an FIR Filter.

8

The Counter Design consists of an Up/Down select, an reset pin which has been set
to 0 and an enable pin which is set to 1. For the Up/Down Select, I am using a step
signal which is high for 20ns and then goes low. So the counter counts from 0 to 20
before it starts to count down. The Gateway In and Gateway Out blocks are used to
convert double values to fixed point values and back to double. All the blocks which
needs to be synthesized have to be selected from the Xilinx blockset and these
blocks will have the Xilinx symbol in them, as seen from the colored blocks in the
design.

9

Counter Input Counter Output

From the graph, we can see that the input step signal is high for 20ns and then
goes low for 5 ns. The output is counting up for 20ns and then counts down for 5ns.

10

For this design, I am passing a Chirp signal as an input to an FIR Equiripple Filter
where the filter parameters are specified by the FDATool. The output spectrum is
viewed through a Hamming window. We can change the options of the Spectrum
Scope for viewing through different windows.

11

The FDATool allows to design a filter using desired parameters. We can choose
between the various options provided and design the filter. Once we do that, the
Magnitude response graph on the FDATool is updated and displays the response of
the designed filter.

12

Input Chirp Signal Output Spectrum

13

The System Generator block is used to generate the HDL code for the Simulink
design. In this block, we specify the family of FPGAs to be targeted, the target
directory, the Synthesis tool to be used (Can be XST, Synplify Pro or Leonardo
Spectrum) and the HDL. It also creates a testbench by selecting the option. Once
we make the selections and hit the generate button, the VHDL files are generated.

14

15

16

17

18

The Xilinx VHDL code uses the Xilinx Core Libraries, Unisim
and XilinxCoreLib.
We need to automate the process for converting the Xilinx
VHDL to Generic VHDL.
A script can be created in Perl or Awk which reads the Xilinx
VHDL code and looks for different Xilinx specific components.
For each component, it scans through the Library source files
where the entities are defined and searches for the required
component entity.
After finding the desired entity, the contents of the entity are
copied onto another VHDL file which also has the entities of
other components parsed by the script.

All the Xilinx specific components which are in the Xilinx VHDL code are present in
these 2 libraries. So, by scanning and copying the component entities into another
file, we can compile that VHDL file which uses only standard libraries. And by
adding that VHDL file to the synthesizing list, we can eliminate the use of the library
and in that way, the code will be generic.

19

Since the design I am using is small, I was
able to manually add the components onto a
different file and then add the file to the
synthesis list.
This will ensure that the code is not using the
Xilinx Libraries but just using the generic
equivalent entities stored in a different file.
These entities depend on only standard
libraries like IEEE.

In the manual process, I am taking the Library source file and copying the entity
whose component is instantiated in the main code into a different VHDL file. In the
counter example which I am using, there are some components which belong the
Unisim library, like FDRE and FDE which are D Flip Flops with and without reset
respectively. I copied these entities onto a different file and compiled that file and
added it to the synthesis list. This resulted in a change in the synthesis result and it
was able to recognize and process these components.

20

From the figure, we can see that, on performing synthesis, the Design Compiler
could not find the design FDRE and FDE which belong to the Unisim library. Though
this appears as a warning message, it can cause potential problems at later stages.

21

The warning message about 2 unresolved references refer to the FDRE and FDE
components.

22

After performing manual conversion, we can see that the FDRE and FDE
components were processed without any warning messages.

23

We are also not getting any warning messages about unresolved references in the
end. This code is therefore generic compared to using the Xilinx core libraries.

24

To automate the process of converting Xilinx
components to generic components, we need
to parse the files and look for specific
components and replace them with their
generic equivalent.
A PHP script can be written to parse a file and
search for a component and replace with its
equivalent generic component.
The components are stored in an SQLITE
database which is opened from the PHP
script.

The PHP script parsefile.php contains a function which opens an SQLITE
database, executes the query and returns the result as a hash array which is a key-
value pair. This hash array is looped through and all keys are stored in one array
and its equivalent values in another array. So if the 1st component of the 1st array is
a certain Xilinx component name, the 1st component of the 2nd array will be its
equivalent generic component name.

Once the names are retrieved and stored in arrays, the “fopen” function of PHP can
be used to open a file. We can either open the file in read mode and replace the
components are store in a new file which is in write mode, or we can open a file in
read + write mode. The “preg_replace” function can be used to replace the Xilinx
component names with the generic names and “fclose” closes the file after all
names are replaced.

As we discover more Xilinx components in the future, we can just add them to the
database and the SQL query fetches them to the arrays. This avoids manually
adding the names to the arrays. A User Interface can be created to insert the
names to the database and replace the components.

25

SQLite is a small C library that implements a
self-contained, embeddable, zero-configuration
SQL database engine. Its transactions are ACID
compliant even after system crashes and power
failures.
A complete database can be stored in a single
disk file which makes it very portable.
Faster than popular client/server database
engines for most common operations.

ACID stands for atomic, consistent, isolated, and durable. A good Database
Management System must be ACID compliant.
An atomic transaction is a series of database operations which either all occur, or
all do not occur ("fail", although failure is not considered catastrophic). A guarantee
of atomicity prevents updates to the database occurring only partially, which can
cause greater problems than rejecting the whole series outright.
A consistent transaction is one that does not violate any integrity constraints during
its execution. If a transaction leaves the database in an illegal state, it is aborted
and an error is reported.
Isolation refers to the ability of the application to make operations in a transaction
appear isolated from all other operations. This means that no operation outside the
transaction can ever see the data in an intermediate state.
Durability property guarantees that transactions that are successfully committed
will survive permanently and will not be undone by system failure.

SQLITE can be used for supporting terabyte-sized databases and gigabyte-sized
strings and blobs but cannot be used when lot of concurrent write transactions can
occur as entire database is locked for a transaction.

26

$db=sqlite_open("xilinxcomponentdb", &$errmsg)
Opening a database.

$result = sqlite_query($db,$query) Executes an
SQL query stored as a string in $query variable.
$output = sqlite_fetch_all($result, SQLITE_ASSOC)

Fetches the result in an array. The result is an
array of key-value pairs of Xilinx and Generic
components.

These are included in a function called get_names. The function code is provided below:

function get_names() {
// Retrieve the Generic Component Information based on the Xilinx name generated

// Open the database
$db=sqlite_open("xilinxcomponentdb", &$errmsg);
if (!$db) {

echo("Coudn't connect to database
");
echo $errmsg;
}

// The SQL query fetches all components. This query can be changed //for specifically
fetching other components using a WHERE clause.

$query = "SELECT * FROM xilinxcomponent d";
$result = sqlite_query($db,$query);

if (!$result) {
echo "Error with Query!
";
echo "$query
";
echo sqlite_error_string(sqlite_last_error($db));
}

$output = sqlite_fetch_all($result, SQLITE_ASSOC);
return $output;

}

27

$fh = fopen("fir_files.vhd", "r") Opens the file
fir_files.vhd in read mode.
$line= fgets($fh) Used in a loop, parses the
line and stores in a variable.
$line1 = preg_replace($orignames,
$genericnames, $line) replaces names in the
files present in1st array with the equivalent
names from 2nd array.
fwrite($fh1, $line1) write to a different file.
fclose($fh) Close the file

The code of parsefile.php script starting from the function call is provided below. The function code should also be included in the main code within the <?php and ?> tags.

//Parsefile.php parses a file, searches for a component from an array //populated from an SQLITE database and replaces it with an equivalent //component.
<?php
//Call the get_names function

$output = get_names();
//Create 2 arrays for original names and generic name

$orignames = array();
$genericnames = array();
foreach ($output as $row) {

//Add each xilinx component to 1st array and generic component to 2nd array
$orignames[] = $row['xilinx_name'];
$genericnames[] = $row['generic_name'];
echo "Xilinx Name is " . $row['xilinx_name'] . " and Generic name is " . $row['generic_name'] . "
";
}
foreach ($orignames as &$value) {

$value = "/".$value."/";
}

// file open in read mode and new file in write mode
$fh = fopen("fir_files.vhd", "r") or exit("Unable to open file!");
$fh1 = fopen("fir_files_new.vhd", "w") or exit("Unable to open file!");
while(!feof($fh))
{

$line= fgets($fh);
// replace each component from 1st array with equivalent //component from 2nd array
$line1 = preg_replace($orignames, $genericnames, $line);
fwrite($fh1, $line1);

}
fclose($fh);
?>

28

Once the VHDL code is converted to generic
code, it can be implemented onto an ASIC
using an IBM 405-S PPC core as CPU.
This core can be synthesized using a tool
called coreConsultant
Due to licensing issues and some installation
problems, the core has not been synthesized
yet.

The IBM PowerPC® 405-S core is a fully synthesizable implementation of the
PowerPC 405 32-bit RISC CPU core employing the
scalable and flexible Power ISA™ 2.03 and optimized for embedded applications.
The PowerPC 405-S core’s performance, power
specifications, and design attributes make it an ideal solution for emerging wired
communications, storage and pervasive computing
applications.

29

The ASIC development flow was illustrated on
Slide 4.
Logical Synthesis is performed by the Synopsys
DC tool which creates the netlists and writes an
SDF file.
In the next step, floorplanning and power-
planning are performed by JupiterXT tool by
Synopsys. This generates an output floorplan in
the form of a def file.
The def file is read by the Physical compiler
which performs Physical Synthesis.
Following this, the Astro tool by Synopsys
performs routing.
The design is finally implemented on an ASIC
after post-synthesis simulation.

HW-1 in 652 course provides a tutorial for ASIC Development flow. The link can be
found here:
http://www-
ece.engr.utk.edu/ece/bouldin_courses/private_html/652-
hw1/index.html
Hw-9 in 652 course provides a tutorial for floorplanning
and power-planning using JupiterXT

30

Floorplan after
Placement by Jupiter

XT

Routed view of
the Floorplan after

running Astro

These images have been taken by running 652 Homework 1.

31

Implementing an ASIC with the IBM 405-S
PPC core once the license issues are resolved.

32

Insecta group at University of Berkeley:
http://bwrc.eecs.berkeley.edu/Research/Insecta/default.htm
Xilinx System Generator:
http://www.xilinx.com/ise/optional_prod/system_generator.htm
CoreConsultant user guide:
www.synopsys.com/designware/docs/doc/coretools/latest/ccug.pdf
652 HW-1:

http://www-ece.engr.utk.edu/ece/bouldin_courses/private_html/652-
hw1/index.html
552 HW-4:

http://www-ce.engr.utk.edu/ece/bouldin_courses/552/homework_4.html

33

I would like to thank Dr. Don Bouldin, my MS
Advisor for providing continuous support
during this project.
Dr. Mark Buckner from ORNL for his helpful
suggestions.
Dr. Itamar ElHanany and Dr. Syed Islam for
being part of the committee.
Jimmy Webb from IT Services for helping with
the installations.

34

35

