Sistema de desarrollo para microcontrolador MCOCICOCICS/JK1

GUSTAVO A. GALEANO info@propuestadinamica.com

JUAN ANDRÉS CASTAÑO WELGOS welgos@telesat.com.co

Sin invertir grandes cantidades de tiempo y dinero en borradores, programadores o software, las tecnologías actuales de microcontroladores de 8 y 16 bits de **MOTOROLA**, permiten que los usuarios tengan rápidamente un laboratorio donde puedan desarrollar sus aplicaciones en un menor tiempo y con una mayor confiabilidad.

En el pasado, las tecnologías existentes en el mercado obligaban a pequeños o medianos industriales a invertir mucho dinero en equipos adicionales al microcontrolador, como son los borradores ultravioleta, programadores, y en algunos casos, en un buen software que les permitiera editar, ensamblar, simular, realizar conecciones y programarlo.

Los nuevos microcontroladores y las herramientas de desarrollo disponibles para los usuarios de 8 bits de **MO-TOROLA**, permiten todas estas facilidades mediante un programa interno de fábrica, que permite iniciar proyectos de forma muy sencilla y rápida y sin ningún costo adicional.

Breve descripción del microcontrolador

El MC68HC908JK3 es uno de los miembros de la familia 08 de Motorola, caracterizados por su bajo costo y alto desempeño. Todos los miembros de esta familia utilizan la unidad de procesamiento denominada CPU08 y están disponibles en una gran variedad de presentaciones (20, 28 y 40 pines) y en diversos tamaños de memoria de programa (1.5K, 4K y 32K). Dentro de las principales características de estos microcontroladores es que son de memoria Flash (borrable y programable eléctricamente) además de contar con 10 canales de conversión de analógico a digital (ADC). En la tabla 1 se pueden observar las características más importantes de la CPU08 y en la tabla 2 las características del microcontrolador MC68HC908JK3, (por sencillez JK3).

Descripción de pines del JK3

En la figura 1 se puede observar la distribución de pines del microcontrolador

Características de la CPU08
Un modelo de programación muy completo, con registro de 16 bits.
Set de instrucciones muy amplio y varios modos de direccionamiento.
Registro de 16 bits y stack pointer manipulable por el usuario.
Instrucciones de transferencia de Memoria a Memoria
Instrucciones de Multiplicación rápida de 8x8
Instrucciones de División rápida de 16/8
Instrucciones de BCD (Binary Coded Decimal)
Fácil soporte de lenguajes de alto nivel como el C.

Tabla 1

Características del MCU JK3:
CPU 08 de 8 bits
Operación interna a 8 MHz
Rango de operación desde 3V
LVI: protección de bajo voltaje.
4 K Bytes para memoria de programa (FLASH)
128 bytes de memoria RAM
10 canales de análogo a digital de 8 bits
15 Entradas/Salidas
2 temporizadores (timers) de 16 bits (Salida por comparación y/o entrada de captura)
Software 100% compatible con el de la familia 05
Versiones HC (cristal o resonador) y HRC (Resistor y capacitor)
Modos de bajo consumo (STOP y WAIT)
COP (Watchdog): perro guardián
8 fuentes de Interrupciones (totalmente vectorizadas)
Pulldowns programables por puerto de entrada

Tabla 2

Figura 1. Diagrama de pines del integrado en su presentación de 20 pines

JK3 y en la tabla 3 la función que desempeña cada uno de ellos.

Arquitectura interna del JK3 y modelo de programación de la CPU08

En la figura 2 se puede apreciar un diagrama interno del microcontrolador y en la figura 3 se muestran los registros internos de la CPU08 mediante los cuales se procesan las instrucciones, los operandos y los resultados. La función básica de cada uno de ellos se describe a continuación.

Acumulador (A): Es un registro de 8 bits de propósito general usado en las operaciones aritméticas y lógicas.

Registro índice (H:X): Es un registro de 16 bits utilizado como apuntador en el modo de direccionamiento indexado.

Puntero de pila (SP): Es un registro de 16 bits que contiene la dirección de la posición disponible en el *stack*.

Contador de programa (PC): Es un registro de 16 bits que contiene la dirección de la siguiente instrucción u operando a ser procesado.

Registro de banderas (CCR): Es un registro de 8 bits que contiene el bit de enmascarado general de interrupciones y 5 banderas de estado, las cuales indican ciertas condiciones originadas por la instrucción previamente ejecutada.

Mapa de memoria

En la figura 4 se muestra el mapa de memoria completo del JK3. Allí se encuentran las direcciones de los registros internos, la posición que ocupa la RAM y la parte asignada al programa del usuario. De igual manera, se observa la zona en la cual se encuentra almacenado el programa de fábrica (ROM MONITOR) que nos permite realizar simulación, debug y programación del microcontrolador. En la zona alta de memoria se encuentran los vectores de interrupción y en ellos se encuentra la dirección (2 bytes) con la cual se carga el contador de programa (PC) cuando se presenta alguna de las interrupciones.

Sistema de desarrollo

El proyecto que realizaremos consiste en un sistema de desarrollo que soporta los microcontroladores **JK3** y el **MC68HC908JK1 (JK1)** de la familia **08** de **MOTOROLA**. Este proyecto se puede adquirir bajo la referencia **K-218 de CEKIT**. En la figura 5 se observa la conexión básica con la computadora.

El sistema consta de un software y de una tarjeta en la cual se inserta el microcontrolador con los elementos básicos para su funcionamiento; la guía de montaje de esta tarjeta se puede apreciar en la figura 6. Posee entrada para alimentación de DC, conversores de nivel TTL a RS-232 que permiten conexión serial a una computadora para simulación y programación, circuito oscilador basado en cristal y LED rojo indicador de alimentación.

El jumper J1 selecciona el modo de funcionamiento. En la posición «PROG» el sistema arranca en modo SIMULA-CION-PROGRAMACION, permitiendo mediante el software instalado, realizar simulación y posterior programación del chip. J1 en la posición «APP» permite que el sistema arranque en modo aplicación; es decir, ejecuta el programa grabado por el usuario.

SW1 es un suiche de dos polos y dos posiciones, que permite remover la alimentación completa del sistema cuando el software del PC así lo solicite para validar el código de seguridad interno del

Figura 2. Diagrama de bloques internos del microcontrolador Motorola 68HC908JK3

micro. El pulsador RST está conectado a la señal de reset del micro permitiendo el control por el usuario de esa función.

J3, J4 y J5 corresponden a tres de los pines del microcontrolador (PTB3 PTB2 y PTB1); para poder entrar al modo simulación-programación, ellos deben tener colocado el jumper respectivo. Si el usuario utiliza estos pines en su aplicación, deberá remover los jumpers cuando arranque el sistema en modo aplicación (J1 en posición APP).

La tarjeta posee un conector en línea macho de 3 pines (CN2), el cual permite la conexión directa al PC (para simulación-programación) y mediante los conectores en línea CN3, CN4 y CN5 se tiene acceso a todos los pines del chip, con los cuales podemos conectar el sistema de desarrollo a nuestra aplicación.

Adicionalmente, el sistema cuenta con un LED verde conectado a uno de los pines del microcontrolador (PD7) y un jumper que conmuta entre +VDD y tierra conectado al pin PB5; mediante estos dos elementos ilustraremos el manejo de salidas y entradas.

Nombre del pin	Descripcion	Entrada/salida	Nivel de voltaje
VDD	Alimentación positiva	Entrada	5v ó 3v
VSS	Tierra	Salida	0v
RST	Reset activo en bajo	Entrada	VDD
	con resistencia interna de pull-up		
IRQ1	 Interrupcion externa 	Entrada	VDD
	 Posee resistencia interna de pull - up 		
	 Pin usado para seleccionar el modo 		
	de arranque (programación o aplicación)		
OSC1	Entrada del oscilador	Entrada	Análogo
OSC2	Salida del oscilador	Salida	Análogo
PTB (0:7)	Puerto I/O de 8 bits	Entrada/salida	VDD
	 8 entradas análogas, ADC(0:7) 	Entrada	Análogo
PTD (2:7)	Puerto I/O de 6 bits	Entrada/salida	VDD
	• PTD (3:2) 2 canales de ADC, ADC(8:9)	Entrada	Análogo
	PTD (4:5) 2 pines de temporizador	Entrada/salida	VDD
	• PTD (6:7) salida en colector	Entrada/salida	VDD
	abierto de maximo 25 mA		

Tabla 3. Descripción de las funciones de cada uno de los pines

Ensamble

Con la guía de ensamble de la figura 6 y la lista de materiales, realice el montaje de los componentes en el impreso de referencia K-218. Tenga precaución de soldar primero los componentes de bajo nivel, tales como resistencias y condensadores; después puede continuar con los transistores y demás elementos. Al finalizar, remueva los excesos del fundente de la soldadura con algún limpiador electrónico de contactos o con thinner. Realice el ensamble del cable de interfaz con la computadora, haciendo los puentes como se ilustra en la figura 7 (en el conector DB9: el pin 4 unido con el pin 6 y el pin 7 unido con el pin 8). En la figura 9 se muestra el aspecto físico de la tarjeta.

Pruebas iniciales de la tarjeta

Para hacer las primeras pruebas a la tarjeta, puede seguir el siguiente procedimiento.

- Sin el microcontrolador JK3, alimentar el circuito con un adaptador de 12VCD con terminación redonda. Tenga precaución con la polaridad: el terminal externo debe ser el positivo (+) y el terminal interno, el negativo (-) o conexión de tierra.
- Realice la medida de voltaje entre TP4 (GND) y TP3 (5V), debe ser alrededor de 5 VDC; de lo contrario revise el montaje del circuito. Realice la medida de voltaje entre TP4 (GND) y TP2 (IRQ); debe ser alrededor de 8 VDC; de lo contrario revise el montaje del circuito.
- 3. Remueva la alimentación de la tarjeta y coloque el micro **JK3** en la base.

Software de desarrollo

El software mediante el cual se puede realizar edición, ensamblado, simulación, programación y *debug* es completamente gratuito y puede ser bajado de internet visitando la página <u>www.pemicro.com</u> (link: **Motorola M68HC908 Kits**). La documentación del microntrolador y notas de aplicación para el manejo de todos los módulos internos del procesador, se pueden encontrar en <u>www.mot-sps.com</u>. Para manipular este sistema, tenga en cuenta el siguiente procedimiento.

- 1. Instale el software ICSJL de pemicro.
- Para verificar el funcionamiento de la tarjeta con el software ICSJL, conecte el circuito al puerto serial de la computadora (DB9) y ejecute el programa ICS08JLZ Development Kit
 WinIDE Development Environment. Allí se accede el segundo ícono de izquierda a derecha (In-Circuit Simulator (EXE1)), figura 10.
- 3. Elija el puerto por el cual fue conectada la tarjeta y 9600 Baud como velocidad de comunicación, figura 11.
- 4. Remover la selección del Checkbox "Serial Port DTR controls target power", para que el software le indique cuándo encender y apagar el circuito (esto es necesario para validar el código de seguridad, en caso que el MCU esté programado previamente).
- 5. Presionar el botón RETRY, para intentar comunicación con el circuito, si no obtiene comunicación luego de varios intentos de encendido y apagado, revise el circuito cuidadosamente y repita el proceso.
- 6. Al obtener comunicación con el circuito, debe aparecer en la pantalla una nueva interface, en la que se tienen ventanas de puertos, zonas de memoria y programa en *assembler*, el cual puede ejecutarse paso por paso en la tarjeta, figura 12.
- 7. Para ilustrar la evaluación del hardware con la ayuda del software ICSJLZ, el circuito provee una salida (LED D2) y una entrada (Jumper J2). Coloque y remueva el Jumper J2 de la tarjeta. Este cambio debe verse reflejado en la zona de puertos del software (esta es la forma como se pueden evaluar que las entradas de su proyecto funcionan adecuadamente). Para evaluar la salida acceda la línea

Figura 5. Conexión básica de la tarjeta con la computadora y con la aplicación

Figura 6. Guía de montaje del K-218

de comandos del software (inferior izquierda) y modifique el estado del puerto D del MCU pin PD7; para esto se debe colocar el pin como salida colocando en el registro DDRD del MCU el valor \$80 (hexadecimal), (comando: DDRD 80) y a continuación, el valor del pin en el registro PORTD del MCU en el estado requerido (para nuestro caso en "1" lógico), (comando: PORTD 80). Después de la ejecución de estos dos comandos, el LED D2 debe encenderse, indicando la conexión adecuada (de manera similar se pueden evaluar las demás salidas del proyecto en particular).

8. La simulación de programas puede hacerse sin la conexión del circuito, ac-

de prueba

Figura 7. Cable que se conecta al puerto serial del PC para comunicarse con la tarjeta. Tenga mucho cuidado al realizar las conexiones, de lo contrario la tarjeta no se podrá comunicar a la PC

Figura 8. Componentes necesarios para el ensamble de la tarjeta. Todo este conjunto lo puede adquirir bajo la referencia K-218 de CEKIT S.A.

Figura 9. Aspecto final de la tarjeta ensamblada

Figura 10. WINIDE es el programa que permite la edición de los programas y además integrar en un solo entorno los procesos de ensamblaje o compilación, programación y depuración

	N ICSOUL In-Crouil Simulator - Version 1 28 In Law Yolm 24 국내 외의 위비교교 대 사람들은 이 국내 이 이 가지 않는 것이 있는 것이 없는 것이 있는 것이 없는 것이 있는 것이 없는 것이 없는 것이 있는 것이 없는 것이 없 않이 않은 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이	지 귀 귀
	ICS08.IL In-Cleanal Simulator Invesse 1.3 Element 128 Element 128 Can't Contact Reard Investe	
Configurar el puerto de su computadora, ya sea en COM1 o en COM 2	BIS Problem contacting board. Greek your board connections and whet the correct COM port. Re-attempt communication with the RETRY button. Otherwise use the EXIT button. Bist PTST, Rem pertainers Bist PT	
Establecer esta velocidad de	The baselinate is dependent upon your hardware configuration. []	×
Deshabilitar esta opción	BETRY SHALLATION any EXIT Application	

Figura 11. Para entrar al simulador se debe configurar el puerto serial a una velocidad de 9600 Baudios y deshabilitar la opción " Serial Port DTR controls target power" cediendo el botón **SIMULATION only** (esta simulación es recomendable para zonas de programa que no tengan interacción directa con el hardware).

En la figura 13 se muestra una tabla resumen de todo el conjunto de instrucciones que puede utilizar para programar este tipo de dispositivos.

Programa ejemplo

El ejemplo que ilustramos a continuación consiste en un sencillo programa que varía la frecuencia de oscilación de encendido del LED D2, dependiendo del estado de la entrada J2 (jumper puesto, menor frecuencia de oscilación). Para la programación del MCU con el programa ejemplo, utilice los pasos que siguen a continuación.

- 1. Acceda el tercer icono del software WinIDE Development environment (programmer (EXE2)).
- 2. Cargue en memoria el algoritmo de programación del MCU JK3 (908_JK3.08p).
- 3. Especificar el archivo a programar en el icono 7 (de izquierda a derecha el ícono con disquete).
- 4. Borrar el MCU presionando el icono 6 (de izquierda a derecha el icono con borrador sobre el chip).
- 5. Programar el chip presionando el icono 8 (de izquierda a derecha el icono de rayo sobre el chip).
- 6. Para ensayar el programa en la tarjeta, cambie el jumper J1 de la posición 2-3 (PROG) a la posición 1-2 (APP), desenergice y energice la tarjeta nuevamente para proporcionar un reset.
- 7. Para volver al modo simulación *incircuit* y programación, cambie J1 de la posición 1-2 (APP) a la posición 2-3 (PROG), remueva la alimentación y colóquela nuevamente.

Páginas donde se puede encontrar información adicional sobre estos microcontroladores:

http://ebus.mot-sps.com/ProdCat/psp/

www.digitaldna.com

www.mot-sps.com/products/ index.html

Figura 12. Pantallazo del simulador ICS08SL. Esta aplicación permite simular los programas en el circuito

<pre>\$Include 'jl3regs.inc</pre>	?; Archivo de definición de registros del 68HC908JK3.
FLASH_START_JK3 RESET_VEC	equ \$EC00 ;dirección de inicio de la flash equ \$FFFE ;dirección del vector de reset
;definición de bits COPD equ Ø PD7 equ 7 PB5 equ 5	;bit de CONFIG1 para habilitar/deshabilitar el watchdog ;bit de conexión a la salida (Led D2) ;bit de conexión de la entrada (jumper J2)
org FLASH_START_JK3 Start:	
Rsp Bset COPD,CON Bsr Init_Led led	;inicializa stack pointer FIG1 ;desabilita el COP (watchdog) ;realiza llamado a la subrutina de estado inicial del
LoopD: Brset PB5,PORTB,Half1 Lda #255T Bra Divi	;verifica el estado de la entrada J2 ;carga el AccA con el valor 255 decimal
Half1: Lda #70T Dly1: Bsr Delay Deca Bne Dly1	;J2 colocado ‡ carga el AccA con un valor menor ;invoca subrutina de retardo ;decrementa el AccA
Bsr Led_ON	;enciende Led D2
Brset PB5,PORTB,Half2 Lda #255T Bra Dlv2	: ;verifica el estado de la entrada J2 ;carga el AccA con el valor 255 decimal
Half2: Lda #70T Dly2: Bsr Delay Deca Bne Dly2	;J2 colocado ‡ carga el AccA con un valor menor ;invoca subrutina de retardo ;decrementa el AccA
Bsr Led_OFF	;apaga Led D2
Bra LoopD	
Led_OFF Bclr PD7,PORT RTS	D ;PD7 en 0
Led_ON: Bset PD7,PORT RTS	D ;PD7 en 1
;subrutina de retardo Delav	básica
ldhx #\$FFFE Loop1 Aix #-1 Cpx #0 Bne Loop1 RTS	;carga registro doble H:X con valor inicial ;decrementa el registro H:X ;compara con 0 ;si no ha llegado continua el retardo ;retorna del llamado
Init_Led: Bset PD7,DDRD Bclr PD7,PORT RTS	;establece el pin PD7 del MCU como salida D ;apaga el led D2 ;retorna de la subrutina
Org RESET_VEC Dw Start	;al darse reset salta a Start

	Manipulac	ión de bit	Saltos			Lectural	escritura			Con	Itrol				Memoria	aringistros			
	DIR	DIR	REL	DIA	HNI	HNI	1X1	Hds	XI	HNI	HNI	IMM	DIR	EXT	002	SP2	IX1	SP1	×
By/	0	-	8		+	s	9	9E6	7	-0	0	¥	88	o	٥	9ED		SEE	-
-	BRSETO 3 DIA	BSET0	BRA 2 REL	2 DIR	NEGA	NEGX	2 IX1	NEG SP1	NEG 1 IX	HUI L	BGE PREL	SUB 2 IMM	SUB 2 DIR	3 EXT	3 1X2	5 SUB 4 SP2	SUB 2 IX1	SUB 3 SP1	SUB XIX
26	BRCUR0 3 DIR	BCLR0	BRN 2 REL	COEGO 3 DIA	CBEGA 3 IMM	CBEQX 3 IMM	CBEQ 3 IX1+	COBEO 4 SP1	CBEQ 2 IX+	HIS INH	BLT 2 REL	CMP 2 MM	2 DIA	CMP B EXT	3 IX2	CMP 4 SP2	S IXI	3 SP1	CMP 1
-	BASET1 3 DIA	DISETT	BHI 2 REL		MUL 1 INH	PINH 1	NSA INH		1 DAA		BGT 2 REL	SBC 2 MM	2 DIR	SBC BC	880 3 1X2	SBC 4 SP2	2 IXI	58C 3 SP1	280 SBC
0.00	BRCLAT 3 DIR	BCLR1 2 DIR	BLS 2 REL	COM 2 DIR	COMA 1 INH	COMX	2 DOM	COM 3 SP1	+ IX	HNI L	BLE 2 REL	2 MM	2 DIR	CPX BEXT	CPX 3 IX2	60X 4 SP2	CPX 2 IX1	CPX 3 SP1	1 CPX
-	BASET2 3 DIA	BSET2 2 DIR	BCC 2 REL	2 DIA	LSRA HNI 1	LSRX 1 INH	LSR IX1	LSR 3 SP1	LSR 1 IX	TAP 1 INH	TXS 1 INH	AND 2 MM	2 DIR	AND B EXT	AND 3 IX2	AND 4 SP2	aND 2 IX1	AND 3 SP1	ANID XI
-	BACLR2 3 DIA	BCLR2 2 DIR	BCS 2 REL	STHX 2 DIR	LDHX 3 IMM	2 DIA	CPHX 3 IMM		CPHX 2 DIR	TPA TPA	1 TSX 1 NH	BIT 2 IMM	BIT 2 DIR	BIT BIT	81T 3 1X2	817 4 SP2	BIT 2 IX1	BIT 3 SP1	N BI
1000	BRSET3 3 DIR	BSET3	BNE 2 REL	POR 2 DIR	HORA TINH	HORON HNI	POR 1X1	BOR SP1	FOR T	PULA INH		2 IDA	2 DIA	S EXT	3 IX2	4 SP2	n den	1DA 3 SP1	~9×
	BRCLAS 3 DIA	BCLR3 2 DIR	BEO 2 REL	ASR 2 DIR	ASRA T INH	ASRX	ASR IX1	ASR SPI	ASH XI	PSHA INH	TAX INH	AIS NM	STA STA	STA STA	STA 3 IX2	STA 8 SP2	STA STA	STA 3 SP1	STA IX
1	BRSET4 3 DIR	BSET4 2 DIR	BHOC 2 REL	2 LSL	LSLA INH	LSLX INH	2 ISL	1SL SP1	1 ISL 1	PULX	CLC INH	EOR 2 IMM	2 DIA	EOR EXT	EOR 3 IX2	EOR 4 SP2	EOR Z IX1	EOR 3 SP1	EOR S
	BRCLAM 3 DIA	BCLR4	BHICS 2 REL	POL 2 DIA	HOLA L	HOLX INH	ROL 2 IX1	BOL 3 SP1	ROL I IX	PSHX NHN 1	SEC 1	ADC 2	ADC DIR	ADC ADC	ADC 3 IX2	ADC 4 SP2	ADC ADC	ADC 3 SP1	ADC 4
	BASETS 3 DIA	DSETS 2 DIR	BPL 2 REL	2 DIA	DECA	DECX	2 DEC	DEC 3 SP1	1 DEC	PUCH 1 INH		C IMM	2 DIR	0RA BECT	a IX2	0RA 4 SP2	2 IX1	ORA 3 SP1	1 IX
11.20	BACLAS 3 DIA	BCLAS 2 DIR	BMI 2 PEL	DBNZ BIG	DBNZA 2 INH	DBNZX 2 INH	DBNZ 3 DK1	DBNZ 4 SP1	DBNZ 2 IX	PSHH	1 SEI	ADD 2 IMM	ADD 2 DIR	ADD BEXT	ADD ADD IX2	ADD 4 SP2	2 IX1	ADD ADD 3 SP1	4DD 2
	BRSET6 3 DIR	BSET6	BMC 2 REL	2 DIA	INCA INH	INCX INH	2 INC	a NG SP1	*UN*	CURH INH	HSP HNI 1		2 DIR	JMP 3 EXT	3 IX2		2 IX1		N days
11.00	BACLA6 3 DIR	BCLR6	BMS 2 REL	TST 2 DIH	TSTA TSTA	TSTX INH	18T 2 DX1	1ST 3 SP1	TST 1 IX		HNI +	BSR 2 REL	2 DIR	JSH 3 EXT	JSR IX2		alsh 2 IX1		4 USH +
ment	BRSET7 3 DIR	BSET7 2 DIR	BIL 2 REL		3 DO	MOV 2 DIX+	MOV 3 MD		MOV 2 IX+D	STOP INH	•	2 IDX	2 DIR	3 EXT	4 LDX 3 IX2	4 SP2	2 LDX 2 IX1	3 SP1	×××
maria	BRCLR7 3 DIR	BCLR7 2 DIR	BIH 2 REL	2 DIA	CLRA INH	CLRY T INH	CLR 2 IX1	CLA 3 SP1	N CLAN	VIAIT INH	TXA HNI T	alX 2 IMM	STX 2 DIA	STX 3 EXT	8TX 3 IX2	STX 4 SP2	STX STX	STX 3 SP1	stx XXX
HNN	Dired	to ente											HER MER	ō	Byte alto	del código	de operad	nör	
×	Index	ope							Byte	a bajo del c	ódigo de o	peración	0	BASETO 3 DIR	Ciclos Número o	to bytes/ M	lodo de dir	bcolonami	atra

PROYECTO _____

Figura 13. En esta tabla se muestra el Set de instrucciones de este microcontrolador, incluyendo el número de ciclos de máquina que gasta cada una de ellas