
Order this document
by AN1743/D

Motorola Semiconductor Application Note

AN1743
Scrolling Message Software
By Brad Bierschenk

Consumer Systems Group, Applications Engineering
Austin, Texas

Introduction

Many MCU applications use displays, such as LCD or LED panels, to
provide useful output. Modern displays are an efficient and affordable
way for microcontrollers to communicate with the outside world.

However, one limitation of such displays is the amount of information
that can be presented at one time. To output a message that is longer
than its display, MCU software needs a method to “scroll” information
across the display screen. This method should be divided into
independent tasks, allowing for normal paced-loop program execution.
This application note documents such a technique.

LCD Displays

Many different types of displays are used in MCU applications, but the
most common is the LCD (liquid crystal display). These can come in a
wide variety of styles.
© Motorola, Inc., 1998 AN1743

Application Note
The two most basic LCD styles typical of 8-bit MCU applications are:

• Dot-matrix character display

• Segmented character display

Dot-matrix
Displays

Dot-matrix character displays usually have on-board controllers, which
handle the character mapping that converts ASCII character input to dot-
matrix character output. The LCD controller also generates the driving
waveforms for the display. These displays are commonly accessed by a
serial connection, using command and data bytes to control the LCD
module. These types of displays are easy to interface, but tend to be
larger and more expensive.

Segmented
Displays

Segmented LCD displays, on the other hand, generally are interfaced in
a parallel fashion. Each numeric or alpha-numeric digit is composed of
a specific number of segments, usually seven to 16 per digit. Each
segment of the display has its own input line. To decrease the number
of input lines required, displays can be multiplexed. This is done by the
use of multiple backplanes, referred to as the “duty” of the display (for
example, 1/4 duty implies the use of four backplanes for multiplexing).
This allows one frontplane line to control several segments.

A segmented, multiplexed LCD display is controlled by the use of
waveforms which provide various voltage levels, referred to as the “bias”
of the display. The theory behind these waveforms is beyond the scope
of this document. The control waveforms can be generated by software
control of I/O pins, by a separate driver chip, or by dedicated MCU
circuitry.

Some Motorola MCUs provide built-in LCD drivers. One specific
example is the MC68HC705L16 microcontroller. This useful MCU can
effectively drive an LCD with up to 156 segments. The output of the
drivers is controlled by data register values.

The method presented in this document assumes the use of a
segmented display. This method can be adapted easily to other
displays, such as dot-matrix type LCD modules, with a few changes in
software. The use of an “intelligent” dot-matrix LCD would decrease
AN1743

2 MOTOROLA

Application Note
The 68HC705L16 Microcontroller
software complexity and memory requirements, and would require a
serial or parallel MCU interface.

The 68HC705L16 Microcontroller

The MC68HC705L16 microcontroller is especially suited for LCD
applications. It provides an internal LCD driver, which supports up to four
backplanes and 39 frontplanes, for control of 156 segments through 43
pins.

An external resistor ladder provides the bias levels for the LCD
waveform. The output waveforms are generated automatically by the
MCU, which is driven by data registers. The user simply writes to the
data registers to control the LCD segments.

A Software Method of Scrolling

If an MCU application requires visual output, predetermined “canned”
messages will be displayed. If the message shown is longer than the
display, the message needs to progress across the display. In a paced-
loop program structure typical of MCU software, tasks are executed in a
deliberate order. The software technique must allow for normal task
processing, while appearing to scroll a message across the display
continuously.

Message Storage The software stores messages as ASCII character strings in memory.
The end of a message is marked by a special end-of-text character. The
start of each message is identified by its offset from a base address.

The base address of a group of message strings is identified with a label.
This allows the beginning of a particular message string to be calculated
as an offset from the base address. Because the message strings and
their characters are referenced using indexed addressing, blocks of
messages are limited to 255 bytes. String storage capability can be
AN1743

MOTOROLA 3

Application Note
extended by using multiple base address labels (for instance,
ErrorMsgs, WarningMsgs, and InputMsgs) to label strings categorically.

The first step in displaying a message using this method is to identify the
string to be shown. Two index variables keep track of the starting and
current offset of the message string. The index variables and the base
address of a message group are used to access the character data from
the string. The main loop of the program is where the user's normal tasks
would be carried out. The scrolling software should not impede the
execution of other system tasks.

Displaying
Messages

The routine to update the display is called as a normal task in the main
loop. This accomplishes the goal of scrolling the string by showing
successive portions of a message. After a display's worth of characters
are shown, the message index is incremented. Once the end of the
string has been reached, the software continues to scroll the string off
the display, “padding” unused display positions with blank spaces. Once
the message has scrolled off the display, the software resets the
message index variables and the message is displayed again from its
beginning.

Message strings are stored in the MCU as ASCII character values.
There needs to be a way of relating the ASCII character bytes to LCD
data register values. LCD data register values are a bitmap of segment
values for a particular LCD digit. By setting the segment values
appropriately, characters can be represented on the display.

Character
Conversion

The relationship between ASCII characters and LCD segment data is
handled by a lookup table. Each entry in the table contains two bytes
which represent the segment values required to display a particular
character. A conversion subroutine is called, with the ASCII character
value to be converted as an argument. The conversion checks to see if
the character is a valid alphabetic, numeric, or a special character. A
predefined operation on the ASCII value converts it into an offset into the
lookup table.

The segment bitmap for the character can then be accessed, using the
offset and the base address of the lookup table. After this conversion, a
character can be displayed by taking its data bytes from the table and
AN1743

4 MOTOROLA

Application Note
Sample Application
placing them in the appropriate LCD data registers. This process is
repeated for all the data registers that correspond to the frontplane
outputs being used for the display.

By showing one display worth of characters at a time, the work of
outputting a scrolling message can be divided into discrete time
segments. Incrementing the index into the current string before updating
the display gives the impression that a message is scrolling continuously
across the display.

Sample Application

In this simple application, an 8-digit, 15-segment display (Planar-
Standish Model 4228) is used to show text messages. This particular
display has four backplane pins and 32 frontplane pins. Connections are
made to a Motorola MC68HC705L16 microcontroller through an
emulator module. The four backplane lines from the MCU are connected
to the four common backplane pins of the LCD panel, and the first 32
frontplane lines from the MCU are connected to the 32 frontplane pins of
the display.

Table 1 shows the connections made between the MCU and the LCD
panel.

Table 1. Connections between the MCU
and LCD Panels

L16 MCU pin LCD panel function LCD panel pin number

BP0 COM1 21

BP1 COM2 40

BP2 COM3 1

BP3 COM4 20

FP0 8A 38

FP1 8B 39

FP2 8C 3

FP3 8D 2

FP4 7A 36

FP5 7B 37

FP6 7C 5
AN1743

MOTOROLA 5

Application Note
The connections between the frontplane drivers and the LCD panel
determine the segment assignments of the LCD data registers.
Figure 1 illustrates the meaning in this particular application. There are
two LCD data registers for each position of the LCD display.

Each bit in an LCD data register represents a segment in an LCD
position. Therefore, each table entry stores the 16 segment values
necessary to display a given character on the display. Table 2 shows the
segment bit-mapping for this application.

FP7 7D 4

FP8 6A 34

FP9 6B 35

FP10 6C 7

FP11 6D 6

FP12 5A 32

FP13 5B 33

FP14 5C 9

FP15 5D 8

FP16 4A 28

FP17 4B 30

FP18 4C 12

FP19 4D 10

FP20 3A 26

FP21 3B 27

FP22 3C 15

FP23 3D 14

FP24 2A 24

FP25 2B 25

FP26 2C 17

FP27 2D 16

FP28 1A 22

FP29 1B 23

FP30 1C 19

FP31 1D 18

Table 1. Connections between the MCU
and LCD Panels (Continued)

L16 MCU pin LCD panel function LCD panel pin number
AN1743

6 MOTOROLA

Application Note
Sample Application
Figure 1. LCD Segment Assignments

For example, to display the letter A, the segments A, B, C, E, F, G1, and
G2 need to be lit. This would require data register values of $27 and $64
in the corresponding LDATn and LDATn+1 registers.

A resistor ladder is connected to the VLCD1, VLCD2, and VLCD3 pins
to provide the voltage levels for the LCD waveform. A variable resistor in
the ladder allows the display contrast to be adjusted.

Figure 2 shows a circuit diagram of relevant connections to the LCD
display. Common connections (power supply, oscillator, etc.) are not
shown.

Table 2. Segment Bit-Mapping

Register B7 B6 B5 B4 B3 B2 B1 B0

LDATn M N G1 H DP C B A

LDATn+1 D E F — L G2 K J

L
C

D

A

E

F

G1 G2

H J
BK

MN

DP
AN1743

MOTOROLA 7

Application Note
Figure 2. LCD Connections

A button switch connected to the IRQ line allows triggering of an external
interrupt. On an external interrupt, the service routine loads the next
message in the message block.

For this application, a lookup table is specified. The size of the lookup
table is determined by the flexibility of the display. Table 3 shows how
an ASCII value is converted to an offset into the lookup table in this
application.

IRQ

VDDVDD

100 K

100 K

100 K

20 K TO 100 K

1 K

0.1 µF

VLCD1

VLCD2

VLCD3

BP0 – BP3 FP0 – FP31

COM1 TO COM4

LCD PINS 1, 20, 21, AND 40

MC68HC705L16

 MCU

FRONTPLANE PINS

SEE TABLE 1

4 32

8-DIGIT LCD PANEL

DIGIT 0DIGIT 8
AN1743

8 MOTOROLA

Application Note
Sample Application
Once the offset is calculated, it is multiplied by 2 because there are two
segment data bytes for every character. The software also checks for
invalid values 0–31, 58–64, and 91–255 (ASCII decimal). These values
are invalid because they cannot be displayed on the LCD panel.

This application is intended to be a simple demonstration of the scrolling
message software, but it could be expanded easily to provide more
functionality.

This method can also be adapted for connection to a smart LCD module.
In this case, the routine ShowChar would be modified to display a
character differently, but all other program flow would remain the same.
The method of connection should not affect the basic scrolling algorithm.

Table 3. Lookup Table

Character types
ASCII value
(decimal)

Table offset
(decimal)

Conversion
operation

Special 32 – 47 0 – 15 ASCII – 32

Numeric 48 – 57 16 – 25 ASCII – 32

Alphabetic 65 – 90 26 – 51 ASCII – 39
AN1743

MOTOROLA 9

Application Note
Conclusion

Alternatives
and Trade-offs

There are several methods of integrating an LCD into a microcontroller
system. Trade-offs in cost, complexity, and convenience must be
considered.

Table 4 illustrates the advantages and disadvantages of different LCD
implementations.

Software Drivers The most basic method is to drive a display panel through software
which generates LCD waveforms.

The advantages of this method:

• It can be implemented with practically any MCU.

• Costs will be minimized.

The disadvantage:

• It requires much more software overhead.

“Smart” LCD
Modules

The most convenient method is to connect a “smart” LCD module
through a serial or parallel MCU connection. The MCU can send
command and data bytes to the LCD module with a minimum amount of
software or hardware overhead.

Table 4. LCD Connection Methods

Method Advantages Disadvantages

MCU with on-board
hardware drivers and raw

glass

Fewer components
Reliable LCD output
Application flexibility

Requires specialized MCU

MCU with software
drivers and raw glass

Fewer components
Wide range of MCUs

More software overhead

MCU, LCD driver chip,
and raw glass

Less software overhead
Wide range of MCUs

More components

MCU and smart LCD
module

Less software overhead
Fewer components

Wide range of MCUs
Higher cost
AN1743

10 MOTOROLA

Application Note
Conclusion
The advantages of this method are:

• It has easy interface with practically any MCU.

• It requires less software and hardware overhead.

The disadvantages are:

• This method may be more expensive.

• The functionality might be limited to the capabilities of the LCD
module.

LCD Driver ICs A wide variety of integrated circuit LCD drivers is also available. These
components can be used as an interface between any MCU and a glass
panel.

The 705L16 MCU The use of the MC68HC705L16 MCU provides a practical compromise
between cost and complexity. The advantages of using the 705L16
include:

• The MC68HC705L16's 16,384 bytes of EPROM provide a large
amount of storage for code and message strings.

• The MC68HC705L16's built-in LCD drivers provide reliable and
autonomous LCD waveform generation.

• If combined with keypad input, the MC68HC705L16 and LCD
display can provide a large amount of user input and output with
one MCU.
AN1743

MOTOROLA 11

Application Note
Figure 3. Main Program Flow

INITIALIZE MCU

START

LOAD INITIAL MESSAGE

SET MSGINDEX

SET MSGSTART

MAIN LOOP

 UPDATE LCD LOAD MSGINDEX

CALL SHOWSTRING

INCREMENT MSGINDEX

DELAY
AN1743

12 MOTOROLA

Application Note
Conclusion
Figure 4. ShowString Subroutine

SHOWSTRING

SET LCDREG VARIABLE

CLEAR COUNT VARIABLE

TO FIRST DATA REGISTER

NEXTBYTE

LOAD NEXT ASCII
CHARACTER FROM
MESSAGE STRING

IS NEXT BYTE
END OF STRING

MARKER?

CALL SHOWCHAR

INCREMENT MSGINDEX

INCREMENT COUNT

COUNT = MAXCHARS?

PADDING

CALL BLANKSPACE

COUNT = MAXCHARS?

INCREMENT COUNT

DONE

RETURN

COUNT = 0?

RESET

RESET STRING

YES

NO

YES

NO

YES

NO

YES

NO
AN1743

MOTOROLA 13

Application Note
Figure 5. ShowChar Subroutine

SHOWCHAR

ASCII VALUE IN A

RETURN

INCREMENT LCDREG

CALL CONVERT

TABLE OFFSET IN A

TRANSFER A TO X

STORE DATA BYTES
IN LCD DATA

 TO BY LCDREG
 REGISTERS, POINTED

BY 2

CONVERT

SPECIAL
CHARACTER?

NUMERIC
CHARACTER?

INVALID
CHARACTER?

SUBTRACT 39 SUBTRACT 32

INVALID
CHARACTER?

MULTIPLY BY 2
2 BYTES PER ENTRY

RETURN TABLE OFFSET
IN A

INVALID CHARACTER

RETURN OFFSET TO
SPACE CHARACTER

NO

NO

NO

NO

YES

YES

YES

YES

GET TWO
SEGMENT DATA BYTES

FROM TABLE
AN1743

14 MOTOROLA

Application Note
Code Listing
Code Listing

**
* SCROLL.ASM
**
* Brad Bierschenk, 03/23/98
* CSG Applications Engineering
* Motorola SPS
*
* Software written to demonstrate scrolling long text messages across an LCD
* display.
*
* This is written for the MC68HC705L16, which provides built-in LCD drive
* capabilities.
* The LCD used is a Planar-Standish Model 4228 Multiplex 15-segment, 8-digit panel.
* (1/4 duty, 1/3 bias)
* An external interrupt provided by a button switch on IRQ1' selects the
* message to be displayed.
*
* Although this software was written for the 705L16 interface to raw LCD glass, it can
* easily modified for use with a smart LCD module and a serial interface with
* another MCU.
*
*---
$BASE 10T ;Default assembler number base

*---
* Memory Equates
*---
RAMSPACE EQU $0040 ;Start of user RAM
ROMSPACE EQU $1000 ;Start of user ROM
RESETVEC EQU $FFFE ;Reset vector
IRQVEC EQU $FFFA ;IRQ' vector

*---
* Register Equates
*---
* Registers
MISC EQU $3E ;Miscellaneous register
TBCR1 EQU $10 ;Time base control register 1
LCDCR EQU $20 ;LCD control register
LCDDR EQU $21 ;First LCD data register location
INTCR EQU $08 ;Interrupt control register
INTSR EQU $09 ;Interrupt status register

* Bit locations
LCDE EQU $07 ;LCD enable bit in LCDCR
SYS0 EQU $02 ;SYS0 bit in MISC
SYS1 EQU $03 ;SYS1 bit in MISC
AN1743

MOTOROLA 15

Application Note
IRQ1E EQU $07 ;IRQ1 enable bit in INTCR
IRQ1S EQU $03 ;IRQ1 sensitivity bit
IRQ1F EQU $07 ;IRQ1 flag bit in INTSR
RIRQ1 EQU $03 ;Reset IRQ1 flag bit

*---
* LCD Equates
*---
MAXCHARS EQU $08 ;Maximum characters per line of LCD
EOT EQU $04 ;End of string marker (ASCII EOT)

*---
* RAM Variables
*---
 ORG RAMSPACE ;Start of user RAM
TempX RMB 1 ;Temporary register storage
TempA RMB 1 ;Temporary register storage
TempData RMB 1 ;Temp storage for LCD segment data
LCDReg RMB 1 ;8-bit address pointer
Count RMB 1 ;Counter variable
MsgIndex RMB 1 ;Index counter variable
MsgStart RMB 1 ;Stores starting point of string

*--
* Start of program code
*--
 ORG ROMSPACE ;Start of user EPROM
Start BCLR SYS0,MISC ;Setup for f_op = f_osc/2
 BCLR SYS1,MISC
 LDA #$20 ;XOSC for time base
 STA TBCR1 ;LCD clock = XOSC/128 = 256Hz
 BSET LCDE,LCDCR ;Enable LCD
 BSET IRQ1S,INTCR ;Set edge-level sensitivity
 BSET IRQ1E,INTCR ;Enable IRQ1 interrupts
 BSET RIRQ1,INTSR ;Clear IRQ1 flag
 CLI ;Enable interrupts

*---
* Initialize string to be initially displayed.
* When a new message is desired, the same LDA offset, JSR LoadMsg steps should
* be followed.
*---
 LDA #Msg1 ;Load offset of desired string
 JSR LoadMsg ;Initialize message variables

*---
* Main loop
* UpdateLCD might be one of many tasks necessary in a paced-loop structure.
* If more tasks were implemented in the main loop, the delay would be adjusted
* (or eliminated) to provide the desired scroll rate.
*---
AN1743

16 MOTOROLA

Application Note
Code Listing
MainLoop JSR UpdateLCD ;Update the LCD display
 LDA #!250
 JSR Delay ;Wait 250ms
 BRA MainLoop ;Repeat

*---
* SUBROUTINES
*---
* Initialize the message variables for the desired output string.
* Register A contains the offset of desired message.
*---
LoadMsg STA MsgIndex ;Setup the message index
 STA MsgStart ;Store the start of the message
 RTS ;Return

*---
* Update the LCD with current portion of string to be displayed.
*---
UpdateLCD LDX MsgIndex ;Start at current index into message
 JSR ShowString ;Show current portion of string
 INC MsgIndex ;Increment the index
 RTS ;Return

*---
* Show the current string portion on the display.
* When called, the X register contains the index offset.
*--
ShowString LDA #LCDDR ;First LCD data register
 STA LCDReg ;LCDReg = First LCD data register
 CLR Count ;Clear the counter variable
NextByte LDA Msgs,X ;Load ASCII byte of string
 CMP #EOT ;Check for end of string
 BEQ Padding ;Last character reached
 JSR ShowChar ;Display character
 INCX ;Increment the index
 INC Count ;Increment the counter
 LDA Count ;Check the counter
 CMP #MAXCHARS ;for LCD display length
 BEQ Done ;End of display line reached
 BRA NextByte ;Ready the next byte
Padding LDA Count ;Pad the rest of the display with spaces
 CMP #$00 ;See if string has scrolled off display
 BEQ Reset ;Need to reset string
 CMP #MAXCHARS ;Check for end of display
 BEQ Done ;Finished displaying padding spaces
 INC Count ;Increment counter
 JSR BlankSpace ;Put space in current display position
 BRA Padding ;Repeat
Reset JSR BlankSpace ;Show a final space in first position
 LDX MsgStart ;Load start of message index
 DECX ;Compensate for INCX in UpdateLCD after RTS
 STX MsgIndex ;Record new message index
Done RTS ;Return
AN1743

MOTOROLA 17

Application Note
*---
* ShowChar converts an ASCII character value in Register A to an offset into the
* character table. The two bytes at the offset location of the table define the
* segment values for displaying the character on the display. Then use the offset
* offset into the LCD data table to get the 2 bytes for the LCD position and
* store them in the appropriate LCD data registers.
*--
ShowChar STX TempX ;Save X register
 JSR Convert ;Convert ASCII byte into table offset
 TAX ;Put offset into X
 LDA Table+1,X ;Get second LCD data byte
 STA TempData ;Store it temporarily
 LDA Table,X ;Load A with first LCD data byte
 LDX LCDReg ;Point X to current LCD data register
 STA 0,X ;Store first byte to LCD data register
 LDA TempData ;Load A with second data byte
 STA 1,X ;Store it to second LCD data register
 INC LCDreg ;Increment LCDreg pointer to
 INC LCDReg ;point to the next position's regs.
 LDX TempX ;Restore X register
 RTS ;Return

*---
* Convert ASCII character byte in A to an offset value into the table of LCD
* segment values. The software also checks for an invalid or unusable ASCII character
* value, and shows a blank space in its place. Valid ASCII values are
* (decimal): 32-47, 48-57, 65-90.
*---
Convert CMP #!48 ;Check for "special" character
 BLO Special
 CMP #!65 ;Check for numeric character
 BLO Numeric
Alpha CMP #!90 ;Check for invalid value
 BHI ConvError
 SUB #!39 ;Convert to table offset
 BRA ConvDone
Special CMP #!32 ;Check for invalid value
 BLO ConvError
 SUB #!32 ;Convert to table offset
 BRA ConvDone
Numeric CMP #!57 ;Check for invalid value
 BHI ConvError
 SUB #!32 ;Convert to table offset
 BRA ConvDone
ConvError CLRA ;Invalid value shows as blank space
ConvDone ROLA ;Multiply offset by 2
 RTS ;(2 bytes data per LCD position)
AN1743

18 MOTOROLA

Application Note
Code Listing
*---
* BlankSpace shows a space ($0000) at the current display position's LCD data
* registers.
*---
BlankSpace LDX LCDReg ;Point to current LCD data register
 CLR 0,X ;Clear first data byte
 CLR 1,X ;Clear second data byte
 INC LCDReg ;Increment LCDreg pointer to
 INC LCDReg ;point to the next position's regs.
 RTS ;Return

*---
* Delay for ~Accumulator*1ms (fop = 1MHz)
* A contains the number of 1ms delays desired
*---
Delay CMP #$00 ;Check for remaining delays
 BEQ DDone ;Done?
 BSR MsDelay ;Call 1ms delay routine
 DECA ;Decrement count
 BRA Delay ;Repeat
DDone RTS ;Return

*--
* Delay for ~1ms (fop = 1MHz)
*---
MsDelay STA TempA
 LDA #$5A
MsLoop CMP #$00
 BEQ MsDone
 DECA
 BRA MsLoop
MsDone LDA TEMPA
 RTS

*---
* Interrupt service routine
* This allows a switch on IRQ1 to switch between message strings.
*---
ISR LDA MsgStart ;Start of current message
 CMP #Msg1 ;Determine next message
 BEQ Load2
 CMP #Msg2
 BEQ Load3
Load1 LDA #Msg1 ;Load message 1
 BRA Load
Load2 LDA #Msg2 ;Load message 2
 BRA Load
Load3 LDA #Msg3 ;Load message 3
Load JSR LoadMsg
 BSET RIRQ1,INTSR ;Clear IRQ1 flag
 RTI ;Return
AN1743

MOTOROLA 19

Application Note
*---
* ROM Constants
*---
*---
* "Canned" messages
* Each individual message is identified by its offset into the base address
* labelled Msgs.
* This limits user to 8 bits of offset (255 characters worth).
* If more than 255 characters are desired for messages, one can use some 2-byte
* variable which can contain multiple base addresses.
*
* Valid characters are 0-9, A-Z (UPPERCASE ONLY!), and certain special characters
* are defined in the table as valid.
*---
Msgs EQU * ;Base address of messages
;---
Msg1 EQU *-Msgs ;First message offset
 FCB "** MOTOROLA MICROCONTROLLERS **"
 FCB EOT ;End of text (EOT) marker
;---
Msg2 EQU *-Msgs ;Second message offset
 FCB "SCROLLING MESSAGE DEMONSTRATION"
 FCB EOT ;End of text
;---
Msg3 EQU *-Msgs ;Third message offset
 FCB "705L16 LCD INTERFACE"
 FCB EOT ;End of text
;---
EndMsgs EQU *-Msgs ;End of messages label
AN1743

20 MOTOROLA

Application Note
Code Listing
*---
* Lookup table of LCD segment values for ASCII character values.
* Some characters can not be displayed on 15-segment LCD, so they are marked as
* invalid, and will be displayed as a blank space.
*---
Table FDB $0000 ;' '
 FDB $0000 ;'!' INVALID
 FDB $0201 ;'"'
 FDB $0000 ;'#' INVALID
 FDB $A5A5 ;'$'
 FDB $0000 ;'%' INVALID
 FDB $0000 ;'&' INVALID
 FDB $0001 ;'''
 FDB $000A ;'('
 FDB $5000 ;')'
 FDB $F00F ;'*'
 FDB $A005 ;'+'
 FDB $0000 ;',' INVALID
 FDB $2004 ;'-'
 FDB $0800 ;'.'
 FDB $4002 ;'/'
 FDB $47E2 ;'0'
 FDB $0602 ;'1'
 FDB $23C4 ;'2'
 FDB $2784 ;'3'
 FDB $2624 ;'4'
 FDB $21A8 ;'5'
 FDB $25E4 ;'6'
 FDB $0700 ;'7'
 FDB $27E4 ;'8'
 FDB $27A4 ;'9'
 FDB $2764 ;'A'
 FDB $8785 ;'B'
 FDB $01E0 ;'C'
 FDB $8781 ;'D'
 FDB $21E4 ;'E'
 FDB $2164 ;'F'
 FDB $05E4 ;'G'
 FDB $2664 ;'H'
 FDB $8181 ;'I'
 FDB $06C0 ;'J'
 FDB $206A ;'K'
 FDB $00E0 ;'L'
 FDB $1662 ;'M'
 FDB $1668 ;'N'
 FDB $07E0 ;'O'
 FDB $2364 ;'P'
 FDB $07E8 ;'Q'
 FDB $236C ;'R'
 FDB $25A4 ;'S'
 FDB $8101 ;'T'
AN1743

MOTOROLA 21

Application Note
 FDB $06E0 ;'U'
 FDB $4062 ;'V'
 FDB $4668 ;'W'
 FDB $500A ;'X'
 FDB $9002 ;'Y'
 FDB $4182 ;'Z'
EndTable EQU *-Table ;End of table label

*---
* Vector definitions
*---
 ORG RESETVEC ;Reset vector
 FDB Start
 ORG IRQVEC ;IRQ vector
 FDB ISR
AN1743

22 MOTOROLA

Application Note
Code Listing
AN1743

MOTOROLA 23

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or

1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinigawa-Ku, Tokyo, Japan. 03-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/
AN1743/D

© Motorola, Inc., 1998

Mfax is a trademark of Motorola, Inc.

	Introduction
	LCD Displays
	Dot-matrix Displays
	Segmented Displays

	The 68HC705L16 Microcontroller
	A Software Method of Scrolling
	Message Storage
	Displaying Messages
	Character Conversion

	Sample Application
	Conclusion
	Alternatives and Trade-offs
	Software Drivers
	“Smart” LCD Modules
	LCD Driver ICs
	The 705L16 MCU

	Code Listing

