
Order this document
by AN1219/D

Rev. 1.0

Motorola Semiconductor Application Note

AN1219
M68HC08 Integer Math Routines
By Mark Johnson

CSIC Applications Engineering
Austin, Texas

Introduction

This application note discusses six integer math subroutines(1) that take
advantage of one of the main CPU enhancements in the 68HC08 Family
of microcontroller units (MCU). Each of these subroutines uses stack
relative addressing, an important CPU enhancement.

Although the 68HC08 MCU is a fully upward-compatible performance
extension of the 68HC05 MCU Family, users familiar with the 68HC05
should have little difficulty implementing the 68HC08 architectural
enhancements. For instance, storage space for local variables needed
by a subroutine can now be allocated on the stack when a routine is
entered and released on exit. Since this greatly reduces the need to
assign variables to global RAM space, these integer math routines are
implemented using only 10 bytes of global RAM space. Eight bytes of
global RAM are reserved for the two 32-bit pseudo-accumulators,
INTACC1 and INTACC2. The other 2 bytes assigned to SPVAL are used
by the unsigned 32 x 32 multiply routine to store the value of the stack
pointer.

INTACC1 and INTACC2 are defined as two continuous 4-byte global
RAM locations that are used to input hexadecimal numbers to the

1. None of the six subroutines contained in this appication note check for valid or non-zero
numbers in the two integer accumulators. The user is responsible for ensuring that proper
values are placed in INTACC1 and INTACC2 before the subroutines are invoked.
© Motorola, Inc., 1996, Revised 1997 AN1219 — Rev. 1.0

Application Note
subroutines(1) and to return the results. For proper operation of the
following subroutines, these two storage locations must be allocated
together, but may be located anywhere in RAM address space. SPVAL
may be allocated anywhere in RAM address space.

1. The 32 x 16 unsigned divide algorithm was based on the algorithm written for the M6805 by
Don Weiss and was modified to return a 32-bit quotient. The table lookup and interpolation
routine was written by Kevin Kilbane and was modified to interpolate both positive and
negative slope linear functions.

Software Description

Unsigned 16 × 16
Multiply (UMULT16)

Entry conditions:

INTACC1 and INTACC2 contain the unsigned 16-bit numbers to be
multiplied.

Exit conditions:

INTACC1 contains the unsigned 32-bit product of the two integer
accumulators.

Size:

94 bytes

Stack space:

9 bytes

Subroutine calls:

None

Procedure:

This routine multiplies the two leftmost bytes of INTACC1
(INTACC1 = MSB, INTACC1 + 1 = LSB) by the two leftmost bytes of
INTACC2 (INTACC2 = MSB, INTACC2 + 1 = LSB). (MSB is the
acronym for most significant byte and LSB stands for least significant
byte.) Temporary stack storage locations 1,SP–5,SP are used to hold
the two intermediate products. These intermediate products are then
added together and the final 32-bit result is stored in INTACC1
(INTACC1 = MSB, INTACC1 + 3 = LSB). This process is illustrated in
Figure 1 and in Figure 2 .
AN1219 — Rev. 1.0

2 MOTOROLA

Application Note
Software Description
INTACC1 = Multiplier
INTACC2 = Multiplicand

Figure 1. Unsigned Multiply 16 x 16 Equation

Figure 2. Unsigned 16 × 16 Multiply

INTACC1 × INTACC2

INTACC1 : INTACC1 + 1
= × INTACC2 : INTACC2 + 1

(INTACC1 : INTACC1 + 1) (INTACC2 + 1)
= (INTACC1 : INTACC1 + 1) (INTACC2)

1,SP 2,SP INTACC1 + 3
+ 3,SP 4,SP 5,SP

= INTACC1 : INTACC + 1 : INTACC1 + 2 : INTACC1 + 3

BEGIN

ADD THE TWO INTERMEDIATE

DE-ALLOCATE LOCAL STORAGE.

RETURN FROM SUBROUTINE

MULTIPLY INTACC1:INTACC1 + 1 BY
INTACC2 AND STORE SECOND

INTERMEDIATE PRODUCT

PRODUCTS TOGETHER AND STORE
FINAL 32-BIT RESULT IN LOCATIONS

INTACC1:INTACC1 + 3

RESTORE ACCUMULATOR, X-REG,
AND H-REG VALUES

ALLOCATE 6 BYTES OF LOCAL

MULTIPLY

STORAGE ON STACK
SAVE ACCUMULATOR, X-REG,
AND H-REG VALUES ON STACK

INTACC1:INTACC1 + 1 BY
INTACC2 + 1 AND STORE FIRST

INTERMEDIATE PRODUCT
AN1219 — Rev. 1.0

MOTOROLA 3

Application Note
Unsigned 32 × 32
Multiply (UMULT32)

Entry conditions:

INTACC1 and INTACC2 contain the unsigned 32-bit numbers to be
multiplied.

Exit conditions:

INTACC1 concatenated with INTACC2 contains the unsigned 64-bit
result.

Size:

158 bytes

Stack space:

38 bytes

Subroutine calls:

None

Procedure:

This subroutine multiplies the unsigned 32-bit number
located in INTACC1 (INTACC1 = MSB, INTACC1 + 3 = LSB)
by the unsigned 32-bit number stored in
INTACC2 (INTACC2 = MSB, INTACC2 + 3 = LSB). Each byte
of INTACC2, starting with the LSB, is multiplied by the 4 bytes
of INTACC1 and a 5-byte intermediate product is generated.
The four intermediate products are stored in a 32-byte table
located on the stack. These products are then added together
and the final 8-byte result is placed in
INTACC1:INTACC2 + 3 (INTACC1 = MSB, INTACC2 + 3 = LSB).
An illustration of this mathematical process is shown in Figure 3 and
Figure 4 .
AN1219 — Rev. 1.0

4 MOTOROLA

Application Note
Software Description
INTACC1 = Multiplier
INTACC2 = Multiplicand

Figure 3. Unsigned 32 x 32 Multiply Equation

1. The intermediate result (IR) tags are temporary storage locations on the stack, not
hard-coded locations in RAM.

INTACC1 × INTACC2

INTACC1:INTACC1 + 1:INTACC1 + 2:INTACC1 + 3

× INTACC2:INTACC2 + 1:INTACC2 + 2:INTACC2 + 3

=

(INTACC1:INTACC1 + 1:INTACC1 + 2:INTACC1 + 3)(INTACC2 + 3)

(INTACC1:INTACC1 + 1:INTACC1 + 2:INTACC1 + 3)(INTACC2 + 2)

(INTACC1:INTACC1 + 1:INTACC1 + 2:INTACC1 + 3)(INTACC2 + 1)

= (INTACC1:INTACC1 + 1:INTACC1 + 2:INTACC1 + 3)(INTACC2)

0 0 0 IR03 IR04 IR05 IR06 R07(1)

0 0 IR12 IR13 IR14 IR15 IR16 0

0 IR21 IR22 IR23 IR24 IR25 0 0

+ IR30 IR31 IR32 IR33 IR34 0 0 0

= INTACC1...INTACC2 + 3
AN1219 — Rev. 1.0

MOTOROLA 5

Application Note
Figure 4. Unsigned 32 × 32 Multiply

BEGIN

ALLOCATE 35 BYTES OF LOCAL

INITIALIZE 32 BYTES OF

INITIALIZE MULTIPLICAND,

MULTIPLY EACH BYTE IN

STORAGE ON STACK
SAVE ACCUMULATOR, X-REG,

AND H-REG VALUES ON STACK

CONTINUOUS TEMPORARY
STORAGE ON STACK TO HOLD THE
FOUR INTERMEDIATE PRODUCTS

MULTIPLIER, AND STORAGE
POSITION POINTERS

MULTIPLIER BY ONE MULTIPLICAND
BYTE STORE INTERMEDIATE

PRODUCT DECREMENT STORAGE

HAVE ALL FOUR MULTIPLIER
BYTES BEEN MULTIPLIED BY

ONE MULTIPLICAND?

HAVE ALL FOUR
 MULTIPLICANDS BEEN MULTIPLIED

BY ONE MULTIPLIER?
A

 DECREMENT MULTIPLIER
BYTE POINTER.

STORE MSB OF INTERMEDIATE

GET LSB POSITION OF
NEXT ROW IN STORAGE TABLE

DECREMENT MULTIPLICAND

 RESET MULTIPLIER BYTE POINTER

YES

NO

NO YES

POSITION POINTER.

PRODUCT

 BYTE POINTER

A

STORE MSB OF LAST INTERMEDIATE PRODUCT

LOAD ACCUMULATOR WITH
ADDITION CARRY VARIABLE, ADD

VALUE IN TABLE TO ACCUMULATOR.

CARRY BIT SET?

INITIALIZE CARRY BIT, FINAL
RESULT BYTE POSITION, ROW COUNTER

AND COLUMN COUNTER STORAGE

INCREMENT CARRY VARIABLE

POINT TO NEXT ENTRY
IN COLUMN

DECREMENT ROW POINTER

HAVE ALL COLUMN
ENTRIES BEEN

ADDED UP?

STORE FINAL RESULT BYTE
DECREMENT COLUMN COUNTER

RESET ROW POINTER

HAVE ALL EIGHT
COLUMNS BEEN

ADDED UP?

DE-ALLOCATE LOCAL STORAGE
RESTORE REGISTER VALUES

RETURN FROM SUBROUTINE

NO

NO

NO

YES

YES

YES
AN1219 — Rev. 1.0

6 MOTOROLA

Application Note
Software Description
Signed 8 × 8
Multiply (SMULT8)

Entry conditions:

INTACC1 and INTACC2 contain the signed 8-bit numbers to be
multiplied.

Exit conditions:

The two leftmost bytes of INTACC1 (INTACC1 = MSB,
INTACC1 + 1 = LSB) contain the signed 16-bit product.

Size:

57 bytes

Stack space:

4 bytes

Subroutine calls:

None

Procedure:

This routine performs a signed multiply of INTACC1 (MSB) and
INTACC2 (MSB). Before multiplying the two numbers together, the
program checks the MSB of each byte and performs a two's
complement of that number if the MSB is set. One byte of temporary
stack storage is used to hold the result sign. If both of the numbers to
be multiplied are either negative or positive, the result sign LSB is
cleared or it is set to indicate a negative result. Both numbers are then
multiplied together and the results are placed in the two left-most
bytes of INTACC1 (INTACC1 = MSB, INTACC1 + 1 = LSB). The
routine is exited if the result sign storage location is not equal to one
or the result is two's complemented and the negative result is stored
in locations INTACC1 and INTACC1 + 1.

INTACC1 = Multiplier
INTACC2 = Multiplicand
AN1219 — Rev. 1.0

MOTOROLA 7

Application Note
Figure 5. Signed 8 × 8 Multiply

A

MULTIPLY MULTIPLICAND BY

GET SIGN BIT FROM TEMP STORAGE

MULTIPLIER AND STORE 16-BIT RESULT

IS SIGN BIT SET,
INDICATING A

NEGATIVE RESULT?

TWO’S COMPLEMENT 16-BIT
RESULT AND STORE NEGATIVE

ANSWER IN LOCATIONS
INTACC1 :INTACC1 + 1

DE-ALLOCATE LOCAL STORAGE
RESTORE REGISTER VALUES

RETURN FROM SUBROUTINE

YES

NO

BEGIN

SAVE ACCUMULATOR, X-REG,

CHECK MSB OF MULTIPLIER

AND H-REG VALUES ON STACK
ALLOCATE ONE BYTE OF LOCAL
STORAGE FOR RESULT SIGN BIT

IS MULTIPLIER MSB SET,
INDICATING A NEGATIVE

NUMBER?

IS MULTIPLICAND MSB SET,
INDICATING A NEGATIVE

NUMBER?

A

TWO’S COMPLEMENT MULTIPLIER
AND INCREMENT SIGN BIT

CHECK MSB OF MULTIPLICAND

TWO’S COMPLEMENT
MULTIPLICAND AND SET OR CLEAR

SIGN BIT

YES

YES

YES
AN1219 — Rev. 1.0

8 MOTOROLA

Application Note
Software Description
Signed 16 × 16
Multiply (SMULT16)

Entry conditions:

INTACC1 and INTACC2 contain the signed 16-bit numbers to be
multiplied.

Exit conditions:

INTACC1 contains the signed 32-bit result.

Size:

83 bytes

Stack space:

4 bytes

Subroutine calls:

UMULT16

Procedure:

This routine multiplies the signed 16-bit number in INTACC1
and INTACC1 + 1 by the signed 16-bit number in INTACC2 and
INTACC2 + 1. Before multiplying the two 16-bit numbers together, the
sign bit (MSB) of each 16-bit number is checked and a two's
complement of that number is performed if the MSB is set. One byte
of temporary stack storage space is allocated for the result sign. If
both 16-bit numbers to be multiplied are either positive or negative,
the sign bit LSB is cleared, indicating a positive result, but otherwise
the sign bit LSB is set. Subroutine UMULT16 is called to multiply the
two 16-bit numbers together and store the 32-bit result in locations
INTACC:INTACC1 + 3 (INTACC1 = MSB, INTACC2 = LSB). The
routine is exited if the result sign LSB is cleared or the result is two's
complemented by first one's complementing each byte of the product
and then adding one to that result to complete the two's complement.
The 32-bit negative result is then placed in INTACC1.

INTACC1 = Multiplier
INTACC2 = Multiplicand
AN1219 — Rev. 1.0

MOTOROLA 9

Application Note
Figure 6. Signed 16 × 16 Multiply

SAVE ACCUMULATOR, X-REG,

CHECK MSB OF MULTIPLIER

AND H-REG VALUES ON STACK
ALLOCATE ONE BYTE OF LOCAL
STORAGE FOR RESULT SIGN BIT

IS MULTIPLIER MSB SET,
INDICATING A NEGATIVE

NUMBER?

IS MULTIPLICAND MSB SET,
INDICATING A NEGATIVE

NUMBER?

A

TWO’S COMPLEMENT MULTIPLIER

NO

A

CALL SUBROUTINE UMULT16

GET SIGN BIT FROM TEMP
STORAGE

IS SIGN BIT SET,
INDICATING A

NEGATIVE RESULT?

TWO’S COMPLEMENT 32-BIT
RESULT AND STORE NEGATIVE

ANSWER IN LOCATIONS
INTACC1:INTACC1 + 3

DE-ALLOCATE LOCAL STORAGE
RESTORE REGISTER VALUES

RETURN FROM SUBROUTINE

AND INCREMENT SIGN BIT

CHECK MSB OF MULTIPLICAND

TWO’S COMPLEMENT
MULTIPLICAND AND SET OR CLEAR

SIGN BIT

YES

NO

YES

NO
YES

BEGIN
AN1219 — Rev. 1.0

10 MOTOROLA

Application Note
Software Description
32 × 16 Unsigned
Divide (UDVD32)

Entry conditions:

INTACC1 contains the 32-bit unsigned dividend and INTACC2
contains the 16-bit unsigned divisor.

Exit conditions:

INTACC1 contains the 32-bit quotient and INTACC2 contains the
16-bit remainder.

Size:

136 bytes

Stack space:

6 bytes

Subroutine calls:

None

Procedure:

This routine takes a 32-bit dividend stored in INTACC1:INTACC1 + 3
and divides it by the divisor stored in INTACC2:INTACC2 + 1 using
the standard shift-and-subtract algorithm. This algorithm first clears
the 16-bit remainder, then shifts the dividend/quotient to the left one
bit at a time until all 32 bits of the dividend have been shifted through
the remainder and the divisor is subtracted from the remainder. (See
illustration.) Each time a trial subtraction succeeds, a 1 is placed in the
LSB of the quotient. The 32-bit quotient is placed in locations
INTACC1 = MSB:INTACC1 + 3 = LSB and the remainder is returned
in locations INTACC2 = MSB, INTACC2 + 1 = LSB.
AN1219 — Rev. 1.0

MOTOROLA 11

Application Note
Before subroutine is executed:

During subroutine execution:

After return from subroutine:

INTACC1
INTACC1

+ 1
INTACC1

+ 2
INTACC1

+ 3
INTACC2

INTACC2
+ 1

Dividend
MSB

Dividend Dividend
Dividend

LSB
Divisor
MSB

Divisor
LSB

INTACC1
INTACC1

+ 1
INTACC1

+ 2
INTACC1

+ 3
INTACC2

INTACC2
+ 1

Remainder
MSB

Remainder
LSB

Dividend
MSB

Dividend Dividend

Dividend
LSB/

Quotient
MSB

– Divisor
MSB

– Divisor
LSB

INTACC1
INTACC1

+ 1
INTACC1

+ 2
INTACC1

+ 3
INTACC2

INTACC2
+ 1

Quotient
MSB

Quotient Quotient
Quotient

LSB
Remainder

MSB
Remainder

LSB
AN1219 — Rev. 1.0

12 MOTOROLA

Application Note
Software Description
Figure 7. 32 × 16 Unsigned Divide

BEGIN

SAVE ACCUMULATOR, X-REG,

SUBTRACT 16-BIT DIVISOR

AND H-REG VALUES ON STACK
ALLOCATE 3 BYTES OF LOCAL
STORAGE NEEDED TO STORE

WAS SUBTRACTION
SUCCESSFUL?

A

A

DECREMENT SHIFT COUNTER BY ONE

DE-ALLOCATE LOCAL STORAGE
RESTORE REGISTER VALUES

HAVE ALL 32
SHIFTS BEEN
COMPLETED?

RETURN FROM SUBROUTINE

SET LSB OF QUOTIENT TO 1

YES

YES

NO

16-BIT DIVISOR AND COUNTER
FOR THE NUMBER OF SHIFTS

SHIFT ALL 4 BYTES OF
DIVIDEND 16 BITS TO THE RIGHT
AND CLEAR 16-BIT REMAINDER

SHIFT DIVIDEND AND

ADD DIVISOR TO REMAINDER

FROM REMAINDER

REMAINDER 1 BIT TO THE LEFT

MOVE 32-BIT QUOTIENT
TO LOCATIONS

INTACC1:INTACC1 + 3

MOVE 16-BIT REMAINDER
TO LOCATIONS

INTACC2:INTACC2 + 1

NO
AN1219 — Rev. 1.0

MOTOROLA 13

Application Note
Table Lookup
and Interpolation
(TBLINT)

Entry conditions:

INTACC1 contains the position of table ENTRY 2. INTACC1 + 1
contains the interpolation fraction.

Exit conditions:

INTACC1 + 2 : INTACC1 + 3 contains the 16-bit interpolated value
(INTACC1 + 2 = MSB, INTACC1 + 3 = LSB).

Size:

125 bytes

Stack space:

4 bytes

Subroutine calls:

None

Procedure:

This routine performs table lookup and linear interpolation between
two 16-bit dependent variables (Y) from a table of up to 256 entries
and allowing up to 256 interpolation levels between entries. (By
allowing up to 256 levels of interpolation between two entries, a 64-k
table of 16-bit entries can be compressed into just 256 16-bit entries.)
INTACC1 contains the position of table entry 2 and INTACC1 + 1
contains the interpolation fraction. The unrounded 16-bit result is
placed in INTACC1 + 2 = MSB, INTACC1 + 3 = LSB. INTACC2 is
used to hold the two 16-bit table entries during subroutine execution.

The interpolated result is of the form:

Y = ENTRY1 + (INTPFRC(ENTRY2 − ENTRY1)) / 256

where:

– Y can be within the range 0 < Y < 32,767.

– INTPFRC = (1 ≤ X ≤ 255) / 256

– ENTRY1 and ENTRY2 can be within the range
0 < ENTRY < 32767.

– Slope of linear function can be either positive or negative.

– The table of values can be located anywhere in the memory
map.
AN1219 — Rev. 1.0

14 MOTOROLA

Application Note
Software Description
Example:

– Find the interpolated Y value half way between entry 146
and 147.

– ENTRY2 = Entry # 147 = 4271

– ENTRY1 = Entry # 146 = 2416

– For a 50% level of interpolation: INTPFRC = 128 / 256 = $80

– So:
Y= 2416 + (128(4271 − 2416))/256

= 2416 + (128(1855))/256
= 2416 + 927

Y= 334310 or $D0F

Table 1. Lookup and Interpolation

Entry Number Y Value

0 0

: :
145 1688

ENTRY 1 → 146 2416

ENTRY 2 → 147 4271

: :
255 0
AN1219 — Rev. 1.0

MOTOROLA 15

Application Note
Figure 8. Table Lookup and Interpolation

BEGIN

SAVE ACCUMULATOR, X-REG,

LOAD H:X WITH POSITION OF ENTRY2

AND H-REG VALUES ON STACK
ALLOCATE ONE BYTE OF LOCAL

STORAGE FOR RESULT SIGN FLAG

WAS RESULT POSITIVE?

A

GET ENTRY2 AND ENTRY1

YES

A

MULTIPLY RESULT BY

GET SIGN BIT FROM TEMP STORAGE

IS SIGN BIT SET,
INDICATING A

NEGATIVE RESULT?

RETURN FROM SUBROUTINE

FROM TABLE

SET SIGN FLAG LSB AND TWO’S
COMPLEMENT 16-BIT RESULT

NO

NO

YES

SUBTRACT ENTRY1 FROM ENTRY2

DE-ALLOCATE LOCAL STORAGE
RESTORE REGISTER VALUES

SUBTRACT INTERPOLATED RESULT
FROM ENTRY1

ADD INTERPOLATED RESULT TO
ENTRY1

INTERPOLATION FRACTION, DIVIDE
PRODUCT BY 256, AND STORE

NEW RESULT
AN1219 — Rev. 1.0

16 MOTOROLA

Application Note
Software Listing
Software Listing

**
*
* File name: IMTH08.ASM
* Revision: 1.00
* Date: February 24, 1993
*
* Written By: Mark Johnson
* Motorola CSIC Applications
*
* Assembled Under: P&E Microcomputer Systems IASM08 (Beta Version)
*
* ********************************
* * Revision History *
* ********************************
*
* Revision 1.00 2/24/93 Original Source
**
*
* Program Description:
*
* This program contains six* integer math routines for the 68HC08 Family
* of microcontrollers.
*
* *Note: 1) The 32 x 16 Unsigned divide algorithm was based on
* the one written for the 6805 by Don Weiss and was
* modified to return a 32-bit quotient.
* 2) The Table lookup and interpolation algorithm was
* based on the one written by Kevin Kilbane and was
* modified to interpolate both positive and negative
* slope linear functions.
*
**
*
* Start of main routine
*
 ORG $50 ;RAM address space
*
INTACC1 RMB 4 ;32-bit integer accumulator #1
INTACC2 RMB 4 ;32-bit integer accumulator #2
SPVAL RMB 2 ;storage for stack pointer value
*

ORG $6E00 ;ROM/EPROM address space
START LDHX #$450 ;load H:X with upper RAM boundary + 1
 TXS ;move stack pointer to upper RAM boundary
 CLRH ;clear H:X
 JSR UMULT16 ;call unsigned 16 x 16 multiply routine
 JSR UMULT32 ;call unsigned 32 x 32 multiply routine
 JSR UMULT8 ;call signed 8 x 8 multiply routine
 JSR UMULT16 ;call signed 16 x 16 multiply routine
 JSR UMULT32 ;call 32 x 16 multiply routine
 JSR TBLINT ;call table interpolation routine
 BRA * ;end of main routine
AN1219 — Rev. 1.0

MOTOROLA 17

Application Note
**
* Start of subroutine
* Unsigned 16x16 multiply
*
* This routine multiplies the 16-bit unsigned number stored in
* locations INTACC1:INTACC1+1 by the 16-bit unsigned number stored in
* locations INTACC2:INTACC2+1 and places the 32-bit result in locations
* INTACC1:INTACC1+3 (INTACC1 = MSB:INTACC1+3 = LSB.
*
**
UMULT16 EQU *
 PSHA ;save acc
 PSHX ;save x-reg
 PSHH ;save h-reg
 AIS #-6 ;reserve six bytes of temporary
 ;storage on stack
 CLR 6,SP ;zero storage for multiplication carry
*
* Multiply (INTACC1:INTACC1+1) by INTACC2+1
*
 LDX INTACC1+1 ;load x-reg w/multiplier LSB
 LDA INTACC2+1 ;load acc w/multiplicand LSB
 MUL ;multiply
 STX 6,SP ;save carry from multiply
 STA INTACC1+3 ;store LSB of final result
 LDX INTACC1 ;load x-reg w/multiplier MSB
 LDA INTACC2+1 ;load acc w/multiplicand LSB
 MUL ;multiply
 ADD 6,SP ;add carry from previous multiply
 STA 2,SP ;store 2nd byte of interm. result 1.
 BCC NOINCA ;check for carry from addition
 INCX ;increment MSB of interm. result 1.
NOINCA STX 1,SP ;store MSB of interm. result 1.
 CLR 6,SP ;clear storage for carry
*
* Multiply (INTACC1:INTACC1+1) by INTACC2
*
 LDX INTACC1+1 ;load x-reg w/multiplier LSB
 LDA INTACC2 ;load acc w/multiplicand MSB
 MUL ;multiply
 STX 6,SP ;save carry from multiply
 STA 5,SP ;store LSB of interm. result 2.
 LDX INTACC1 ;load x-reg w/multiplier MSB
 LDA INTACC2 ;load acc w/multiplicand MSB
 MUL ;multiply
 ADD 6,SP ;add carry from previous multiply
 STA 4,SP ;store 2nd byte of interm. result 2.
 BCC NOINCB ;check for carry from addition
 INCX ;increment MSB of interm. result 2.
NOINCB STX 3,SP ;store MSB of interm. result 2.
*

AN1219 — Rev. 1.0

18 MOTOROLA

Application Note
Software Listing
* Add the intermediate results and store the remaining three bytes of the
* final value in locations INTACC1:INTACC1+2.
*
 LDA 2,SP ;load acc with 2nd byte of 1st result
 ADD 5,SP ;add acc with LSB of 2nd result
 STA INTACC1+2 ;store 2nd byte of final result
 LDA 1,SP ;load acc with MSB of 1st result
 ADC 4,SP ;add w/ carry 2nd byte of 2nd result
 STA INTACC1+1 ;store 3rd byte of final result
 LDA 3,SP ;load acc with MSB from 2nd result
 ADC #0 ;add any carry from previous addition
 STA INTACC1 ;store MSB of final result
*
* Reset stack pointer and recover original register values
*
 AIS #6 ;deallocate the six bytes of local
 ;storage
 PULH ;restore h-reg
 PULX ;restore x-reg
 PULA ;restore accumulator
 RTS ;return
**
**
*
* Unsigned 32 x 32 Multiply
*
* This routine multiplies the unsigned 32-bit number stored in locations
* INTACC1:INTACC1+3 by the unsigned 32-bit number stored in locations
* INTACC2:INTACC2+3 and places the unsigned 64-bit result in locations
* INTACC1:INTACC2+3 (INTACCC1 = MSB:INTACC2+3 = LSB).
*
**
UMULT32 EQU *
 PSHA ;save acc
 PSHX ;save x-reg
 PSHH ;save h-reg
 CLRX ;zero x-reg
 CLRA ;zero accumulator
 AIS #-35T ;reserve 35 bytes of temporary storage
 ;on stack
 TSX ;transfer stack pointer + 1 to H:X
 AIX #32T ;add number of bytes in storage table
 STHX SPVAL ;save end of storage table value
 AIX #-32T ;reset H:X to stack pointer value
*
* Clear 32 bytes of storage needed to hold the intermediate results
*
INIT CLR ,X ;xero a byte of storage
 INCX ;point to next location
 CPHX SPVAL ;check for end of table
 BNE INIT ;
*

AN1219 — Rev. 1.0

MOTOROLA 19

Application Note
* Initialize multiplicand and multiplier byte position pointers,
* temporary storage for carry from the multiplication process, and
* intermediate storage location pointer
*
 STA 35T,SP ;zero storage for multiplication carry
 LDA #3 ;load acc w/ 1st byte position
 STA 33T,SP ;pointer for multiplicand byte
 STA 34T,SP ;pointer for multiplier byte
 TSX ;transfer stack pointer + 1 to H:X
 AIX #7 ;position of 1st column in storage
 STHX SPVAL ;pointer to interm. storage position
 CLRH ;clear h-reg
*
* Multiply each byte of the multiplicand by each byte of the multiplier
* and store the intermediate results
*
MULTLP LDX 33T,SP ;load x-reg w/multiplicand byte pointer
 LDA INTACC2,X ;load acc with multiplicand
 LDX 34T,SP ;load x-reg w/ multiplier byte pointer
 LDX INTACC1,X ;load x-reg w/ multiplier
 MUL ;multiply
 ADD 35T,SP ;add carry from previous multiply
 BCC NOINC32 ;check for carry from addition
 INCX ;increment result MSB
NOINC32 STX 35T,SP ;move result MSB to carry
 LDHX SPVAL ;load x-reg w/ storage position pointer
 STA ,X ;store intermediate value
 AIX #-1 ;decrement storage pointer
 STHX SPVAL ;store new pointer value
 CLRH ;clear h-reg
 DEC 34T,SP ;decrement multiplier pointer
 BPL MULTLP ;multiply all four bytes of multiplier
 ;by one byte of the multiplicand
 LDHX SPVAL ;load x-reg w/ storage position pointer
 LDA 35T,SP ;load acc w/ carry (MSB from last mult)
 STA ,X ;store MSB of intermediate result
 AIX #!11 ;add offset for next intermediate
 ;result starting position
 STHX SPVAL ;store new value
 CLRH ;clear h-reg
 CLR 35T,SP ;clear carry storage
 LDX #3 ;
 STX 34T,SP ;reset multiplier pointer
 DEC 33T,SP ;point to next multiplicand
 BPL MULTLP ;loop until each multiplicand has been
 ;multiplied by each multiplier
*

AN1219 — Rev. 1.0

20 MOTOROLA

Application Note
Software Listing
* Initialize temporary stack variables used in the addition process
*

TSX ;transfer stack pointer to H:X
 AIX #7 ;add offset for LSB of result
 STHX SPVAL ;store position of LSB
 CLR 35T,SP ;clear addition carry storage
 LDA #7 ;
 STA 33T,SP ;store LSB position of final result
 LDA #3 ;
 STA 34T,SP ;store counter for number of rows
*
* add all four of the entries in each column together and store the
* final 64-bit value in locations INTACC1:INTACC2+3.
*
OUTADDLP LDA 35T,SP ;load acc with carry
 CLR 35T,SP ;clear carry
INADDLP ADD ,X ;add entry in table to accumulator
 BCC ADDFIN ;check for carry
 INC 35T,SP ;increment carry
ADDFIN AIX #8 ;load H:X with position of next entry
 ;column
 DEC 34T,SP ;decrement row counter
 BPL INADDLP ;loop until all four entries in column
 ;have been added together
 CLRH ;clear h-reg
 LDX #3 ;
 STX 34T,SP ;reset row pointer
 LDX 33T,SP ;load final result byte pointer
 STA INTACC1,X ;store one byte of final result
 LDHX SPVAL ;load original column pointer
 AIX #-1 ;decrement column pointer
 STHX SPVAL ;store new pointer value
 DEC 33T,SP ;decrement final result byte pointer
 BPL OUTADDLP ;loop until all eight columns have
 ;been added up and the final results
 ;stored
*
* Reset stack pointer and recover original registers values
*
 AIS #35T ;deallocate local storage
 PULH ;restore h-reg
 PULX ;restore x-reg
 PULA ;restore accumulator
 RTS ;return
AN1219 — Rev. 1.0

MOTOROLA 21

Application Note
**
**
*
* Signed 8 x 8 Multiply
*
* This routine multiplies the signed 8-bit number stored in location
* INTACC1 by the signed 8-bit number stored in location INTACC2
* and places the signed 16-bit result in INTACC1:INTACC1+1.
*
*
SMULT8 EQU *
 PSHX ;save x-reg
 PSHA ;save accumulator
 PSHH ;save h-reg
 AIS #-1 ;reserve 2 bytes of temp. storage
 CLR 1,SP ;clear storage for result sign
 BRCLR 7,INTACC1,TEST2 ;check multiplier sign bit
 NEG INTACC1 ;two's comp number if negative
 INC 1,SP ;set sign bit for negative number
TEST2 BRCLR 7,INTACC2,SMULT ;check multiplicand sign bit
 NEG INTACC2 ;two's comp number if negative
 INC 1,SP ;set or clear sign bit
SMULT LDX INTACC1 ;load x-reg with multiplier
 LDA INTACC2 ;load acc with multiplicand
 MUL ;multiply
 STA INTACC1+1 ;store result LSB
 STX INTACC1 ;store result MSB
 LDA 1,SP ;load sign bit
 CMP #1 ;check for negative
 BNE RETURN ;branch to finish if result is positive
 NEG INTACC1+1 ;two's comp result LSB
 BCC NOSUB ;check for borrow from zero
 NEG INTACC1 ;two's comp result MSB
 DEC INTACC1 ;decrement result MSB for borrow
 BRA RETURN ;finished
NOSUB NEG INTACC1 ;two's comp result MSB without decrement
RETURN AIS #1 ;deallocate temp storage
 PULH ;restore h-reg
 PULA ;restore accumulator
 PULX ;restore x-reg
 RTS ;return
AN1219 — Rev. 1.0

22 MOTOROLA

Application Note
Software Listing
**
**
*
* Signed 16 x 16 multiply
*
* This routine multiplies the signed 16-bit number in INTACC1:INTACC1+1 by
* the signed 16-bit number in INTACC2:INTACC2+1 and places the signed 32-bit
* value in locations INTACC1:INTACC1+3 (INTACC1 = MSB:INTACC1+3 = LSB).
*
SMULT16 EQU *
 PSHX ;save x-reg
 PSHA ;save accumulator
 PSHH ;save h-reg
 AIS #-1 ;reserve 1 byte of temp. storage
 CLR 1,SP ;clear storage for result sign
 BRCLR 7,INTACC1,TST2 ;check multiplier sign bit and negate
 ;(two's complement) if set
 NEG INTACC1+1 ;two's comp multiplier LSB
 BCC NOSUB1 ;check for borrow from zero
 NEG INTACC1 ;two's comp multiplier MSB
 DEC INTACC1 ;decrement MSB for borrow
 BRA MPRSIGN ;finished
NOSUB1 NEG INTACC1 ;two's comp multiplier MSB (no borrow)
MPRSIGN INC 1,SP ;set sign bit for negative number
TST2 BRCLR 7,INTACC2,MLTSUB ;check multiplicand sign bit and negate
 ;(two's complement) if set
 NEG INTACC2+1 ;two's comp multiplicand LSB
 BCC NOSUB2 ;check for borrow from zero
 NEG INTACC2 ;two's comp multiplicand MSB
 DEC INTACC2 ;decrement MSB for borrow
 BRA MPCSIGN ;finished
NOSUB2 NEG INTACC2 ;two's comp multiplicand MSB (no borrow)
MPCSIGN INC 1,SP ;set or clear sign bit
MLTSUB JSR UMULT16 ;multiply INTACC1 by INTACC2
 LDA 1,SP ;load sign bit
 CMP #1 ;check for negative
 BNE DONE ;exit if answer is positive,
 ;otherwise two's complement result
 LDX #3 ;
COMP COM INTACC1,X ;complement a byte of the result
 DECX ;point to next byte to be complemented
 BPL COMP ;loop until all four bytes of result
 ;have been complemented
 LDA INTACC1+3 ;get result LSB
 ADD #1 ;add a "1" for two's comp
 STA INTACC1+3 ;store new value
 LDX #2 ;
TWSCMP LDA INTACC1,X ; add any carry from the previous
 ADC #0 ; addition to the next three bytes
 STA INTACC1,X ; of the result and store the new
 DECX ; values
 BPL TWSCMP ;
DONE AIS #1 ;deallocate temp storage on stack
 PULH ;restore h-reg
 PULA ;restore accumulator
 PULX ;restore x-reg
 RTS ;return
AN1219 — Rev. 1.0

MOTOROLA 23

Application Note
**
**
*
* 32 x 16 Unsigned Divide
*
* This routine takes the 32-bit dividend stored in INTACC1:INTACC1+3
* and divides it by the 16-bit divisor stored in INTACC2:INTACC2+1.
* The quotient replaces the dividend and the remainder replaces the divisor.
*
UDVD32 EQU *
*
DIVIDEND EQU INTACC1+2
DIVISOR EQU INTACC2
QUOTIENT EQU INTACC1
REMAINDER EQU INTACC1
*
 PSHH ;save h-reg value
 PSHA ;save accumulator
 PSHX ;save x-reg value
 AIS #-3 ;reserve three bytes of temp storage
 LDA #!32 ;
 STA 3,SP ;loop counter for number of shifts
 LDA DIVISOR ;get divisor MSB
 STA 1,SP ;put divisor MSB in working storage
 LDA DIVISOR+1 ;get divisor LSB
 STA 2,SP ;put divisor LSB in working storage
*
* Shift all four bytes of dividend 16 bits to the right and clear
* both bytes of the temporary remainder location
*
 MOV DIVIDEND+1,DIVIDEND+3 ;shift dividend LSB
 MOV DIVIDEND,DIVIDEND+2 ;shift 2nd byte of dividend
 MOV DIVIDEND-1,DIVIDEND+1 ;shift 3rd byte of dividend
 MOV DIVIDEND-2,DIVIDEND ;shift dividend MSB
 CLR REMAINDER ;zero remainder MSB
 CLR REMAINDER+1 ;zero remainder LSB
*
* Shift each byte of dividend and remainder one bit to the left
*
SHFTLP LDA REMAINDER ;get remainder MSB
 ROLA ;shift remainder MSB into carry
 ROL DIVIDEND+3 ;shift dividend LSB
 ROL DIVIDEND+2 ;shift 2nd byte of dividend
 ROL DIVIDEND+1 ;shift 3rd byte of dividend
 ROL DIVIDEND ;shift dividend MSB
 ROL REMAINDER+1 ;shift remainder LSB
 ROL REMAINDER ;shift remainder MSB
*

AN1219 — Rev. 1.0

24 MOTOROLA

Application Note
Software Listing
* Subtract both bytes of the divisor from the remainder
*
 LDA REMAINDER+1 ;get remainder LSB
 SUB 2,SP ;subtract divisor LSB from remainder LSB
 STA REMAINDER+1 ;store new remainder LSB
 LDA REMAINDER ;get remainder MSB
 SBC 1,SP ;subtract divisor MSB from remainder MSB
 STA REMAINDER ;store new remainder MSB
 LDA DIVIDEND+3 ;get low byte of dividend/quotient
 SBC #0 ;dividend low bit holds subtract carry
 STA DIVIDEND+3 ;store low byte of dividend/quotient
*
* Check dividend/quotient LSB. If clear, set LSB of quotient to indicate
* successful subraction, else add both bytes of divisor back to remainder
*
 BRCLR 0,DIVIDEND+3,SETLSB ;check for a carry from subtraction
 ;and add divisor to remainder if set
 LDA REMAINDER+1 ;get remainder LSB
 ADD 2,SP ;add divisor LSB to remainder LSB
 STA REMAINDER+1 ;store remainder LSB
 LDA REMAINDER ;get remainder MSB
 ADC 1,SP ;add divisor MSB to remainder MSB
 STA REMAINDER ;store remainder MSB
 LDA DIVIDEND+3 ;get low byte of dividend
 ADC #0 ;add carry to low bit of dividend
 STA DIVIDEND+3 ;store low byte of dividend
 BRA DECRMT ;do next shift and subtract

SETLSB BSET 0,DIVIDEND+3 ;set LSB of quotient to indicate
 ;successive subtraction
DECRMT DBNZ 3,SP,SHFTLP ;decrement loop counter and do next
 ;shift
*
* Move 32-bit dividend into INTACC1:INTACC1+3 and put 16-bit
* remainder in INTACC2:INTACC2+1
*
 LDA REMAINDER ;get remainder MSB
 STA 1,SP ;temporarily store remainder MSB
 LDA REMAINDER+1 ;get remainder LSB
 STA 2,SP ;temporarily store remainder LSB
 MOV DIVIDEND,QUOTIENT ;
 MOV DIVIDEND+1,QUOTIENT+1 ;shift all four bytes of quotient
 MOV DIVIDEND+2,QUOTIENT+2 ; 16 bits to the left
 MOV DIVIDEND+3,QUOTIENT+3 ;
 LDA 1,SP ;get final remainder MSB
 STA INTACC2 ;store final remainder MSB
 LDA 2,SP ;get final remainder LSB
 STA INTACC2+1 ;store final remainder LSB
*
* Deallocate local storage, restore register values, and return from
* subroutine
*
 AIS #3 ;deallocate temporary storage
 PULX ;restore x-reg value
 PULA ;restore accumulator value
 PULH ;restore h-reg value
 RTS ;return
AN1219 — Rev. 1.0

MOTOROLA 25

Application Note
**
**
*
* Table Lookup and Interpolation
*
* This subroutine performs table lookup and interpolation between two 16-bit
* dependent variables (Y) from a table of up to 256 enties (512 bytes) and
* allowing up to 256 interpolation levels between entries. INTACC1 contains
* the position of ENTRY2 and INTACC1+1 contains the interpolation fraction.
* The 16-bit result is placed in INTACC1+2=MSB, INTACC1+3=LSB. INTACC2 is
* used to hold the two 16-bit entries during the routine.
*
* Y = ENTRY1 + (INTPFRC(ENTRY2 - ENTRY1))/256
*
TBLINT EQU *
*
ENTNUM EQU INTACC1 ;position of entry2 (0-255)
INTPFRC EQU INTACC1+1 ;interpolation fraction (1-255)/256
RESULT EQU INTACC1+2 ;16-bit interpolated Y value
ENTRY1 EQU INTACC2 ;16-bit enrty from table
ENTRY2 EQU INTACC2+2 ;16-bit entry from table
*
 PSHH ;save h-register
 PSHA ;save accumulator
 PSHX ;save x-reg
 AIS #-1 ;allocate one byte of temp storage
 CLRH ;zero h-reg
 CLRA ;zero accumulator
 CLR 1,SP ;clear storage for difference sign
*
* Load H:X with position of ENTRY2
*
 LDX ENTNUM ;get position of entry2 (0-255)
 LSLX ;multiply by 2 (for 16-bit entries)
 BCC GETENT ;if overflow from multiply occured,
 ;increment H-reg.
 INCA ;accumulator = 1
 PSHA ;push accumulator value on stack
 PULH ;transfer acc. value to h register
*
* Get both entries from table, subtract ENTRY1 from ENTRY2 and store the
* 16-bit result.
*
GETENT LDA TABLE-2,x ;get entry1 LSB
 STA ENTRY1
 LDA TABLE-1,x ;get entry1 MSB
 STA ENTRY1+1
 LDA TABLE,x ;get entry2 MSB
 STA ENTRY2
 LDA TABLE+1,x ;get entry2 LSB
 STA ENTRY2+1
 SUB ENTRY1+1 ;entry2(LSB) - entry1(LSB)
 STA RESULT+1 ;store result LSB
 LDA ENTRY2
 SBC ENTRY1 ;entry2(MSB) - entry1(MSB)
 STA RESULT ;store result MSB
*

AN1219 — Rev. 1.0

26 MOTOROLA

Application Note
Software Listing
*
* Two's complement 16-bit result if ENTRY1 was greater than ENTRY2, else
* go do multiply
*
*
 TSTA ;test result MSB for negative
 BGE MLTFRAC ;go do multiply if postive
 INC 1,SP ;set sign flag for negative result
 NEG RESULT+1 ;two's complement result LSB
 BCC NODECR ;check for borrow from zero
 NEG RESULT ;two's complement result MSB
 DEC RESULT ;decrement result MSB for borrow
 BRA MLTFRAC ;go do multiply
NODECR NEG RESULT ;two's comp result MSB (no borrow)
*
* (INTPFRC(RESULT:RESULT+1))/256 = Interpolated result
*
* Multiply result by interpolation fraction
*
MLTFRAC LDA INTPFRC ;get interpolation fraction
 LDX RESULT+1 ;get result LSB
 MUL ;multiply
 STX RESULT+1 ;store upper 8-bits of result and throw
 ;away lower 8-bits (divide by 256)
 LDA INTPFRC ;get interpolation fraction
 LDX RESULT ;get result MSB
 MUL ;multiply
 ADD RESULT+1 ;add result LSB to lower 8-bits of
 ;product
 STA RESULT+1 ;store new result LSB
 TXA ;get upper 8-bits of product
 ADC #0 ;add carry from last addition
 STA RESULT ;store result MSB
*
* Y = ENTRY1 + Interpolated result
*
* Check sign flag to determine if interpolated result is to be added to
* or subtracted from ENTRY1
*
 TST 1,SP ;test sign flag for negative
 BLE ADDVAL ;if not set, add interpolated result
 ;to entry1, else subtract
 LDA ENTRY1+1 ;get entry1 LSB
 SUB RESULT+1 ;subtract result LSB
 STA RESULT+1 ;store new result LSB
 LDA ENTRY1 ;get entry1 MSB
 SBC RESULT ;subtact w/ carry result MSB
 STA RESULT ;store new result MSB
 BRA TBLDONE ;finished
ADDVAL LDA RESULT+1 ;get result LSB
 ADD ENTRY1+1 ;add entry1 LSB
 STA RESULT+1 ;store new result LSB
 LDA ENTRY1 ;get entry1 MSB
 ADC RESULT ;add w/ carry result MSB
 STA RESULT ;store new result MSB
*

AN1219 — Rev. 1.0

MOTOROLA 27

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
* Deallocate local storage, restore register values, and return from
* subroutine.
*
TBLDONE AIS #1 ;deallocate local storage
 PULX ;restore x-reg
 PULA ;restore accumulator
 PULH ;restore h-reg
 RTS ;return from subroutine
*
* Sample of 16-bit table entries
*
TABLE EQU *
 FDB !0000 ;entry 0
 FDB !32767 ;entry 1
 FDB !2416 ;entry 2
 FDB !4271 ;entry 3
**
AN1219/D

© Motorola, Inc., 1997

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-800-441-2447 or

303-675-2140
Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602-244-6609, US & Canada ONLY 1-800-774-1848
INTERNET: http://motorola.com/sps
JAPAN: Nippon Motorola Ltd. SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141, Japan. 81-3-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

Mfax is a trademark of Motorola, Inc.

	Introduction
	Software Description
	Unsigned 16 ¥ 16 Multiply (UMULT16)
	Unsigned 32 ¥ 32 Multiply (UMULT32)
	Signed 8 ¥ 8 Multiply (SMULT8)
	Signed 16 ¥ 16 Multiply (SMULT16)
	32 ¥ 16 Unsigned Divide (UDVD32)
	Table Lookup and Interpolation (TBLINT)

	Software Listing

