
Order this document
by AN1775/D Rev. 1

Motorola Semiconductor Application Note

AN1775
Expanding Digital Input with an A/D Converter
By Brad Bierschenk

Motorola Applications Engineering
Austin, Texas

Introduction

This application note documents a method of extending digital input
using the analog-to-digital converter (ADC) of a microcontroller unit
(MCU).

Many MCU applications require digital input and arbitration. For
example, determining which key of a keypad was pressed. This is
commonly done by arranging switches in a matrix configuration,
connecting to a series of digital input pins, and reading a digital input
data register to determine which key was pressed. While this method is
easily implemented, it does require the use of an MCU’s parallel port
pins.

Some applications require all available bidirectional or input-only pins for
other purposes. In such a case, an alternate method of arbitrating
keypresses is desired. By using the ADC of an MCU connected to a
resistor ladder, user input can be more efficiently processed.
© Motorola, Inc., 1998 AN1775 Rev. 1

Application Note
Background

Dedicated Input A microcontroller typically receives user input through digital input pins.
The simplest implementation is a single switch directly connected to a
digital input pin. This is easy to realize, but is not the most efficient use
of resources, with one pin dedicated to one input. One port data bit
represents the state of one switch.

Matrix Input Another method uses a keypad, a common element in embedded
systems. These are ordinarily arranged in a matrix, as shown in
Figure 1 . In this case, the byte value of an entire port data register can
be polled to determine which key was pressed. This is more efficient, as
a 4 x 4 keypad can interface 16 keys with eight input pins.

Figure 1. Resistor Matrix Keypad Using Parallel Port Pins

P x 0
P x 1
P x 2
P x 3

P x 4

P x 5

P x 6

P x 7
AN1775 Rev. 1

2 MOTOROLA

Application Note
Implementation
ADC Alternative In many cases, input pins are at a premium. One can't always freely
assign input pins to the function of user input. A more efficient use of
microcontroller resources can be devised. One common feature of many
Motorola MCUs is the analog-to-digital converter, or ADC.

The ADC of a Motorola MCU usually features four to eight channels of
analog input, which is compared with a reference voltage and converted
to an 8-bit digital value. When a resistor ladder is connected to an analog
input through switches in each segment, the conversion result can be
used to arbitrate an input. This allows many keys to be interfaced with
one input pin, with only a little more software overhead. Figure 2 shows
such an implementation.

Figure 2. Resistor Ladder Keys Using an Analog Input Pin

Implementation

ADC Operation An MCU ADC typically has 8-bit precision. This means there are 28, or
256, distinguishable A/D inputs, including 0. The analog inputs are
converted to a binary number, which represents the magnitude of the
input voltage in relation to a reference voltage.

VDD

ADC

INPUT

MCU

VIn

PIN
AN1775 Rev. 1

MOTOROLA 3

Application Note
The range of an ADC is the difference between its high and low
reference voltages. This means an analog input between VREFH and
VREFL will convert to an 8-bit number, with VREFL converting to $00 and
VREFH converting to $FF.

The resolution, defined as the range divided by the precision, defines the
analog step that a change in one least significant bit (LSB) represents.

In the case of a 5-volt, 8-bit ADC, the resolution is 5/255 (volts), or
19.6 mV. This means that a change in one LSB in the ADC data register
reflects a change of about 20 mV at the analog input.

Resistor Ladder
Voltage Divider

Consider a resistor ladder connected to an ADC input, as shown in
Figure 3 . Because this arrangement is a voltage divider, each segment
in the ladder can alter the voltage at the input when grounded. If
switches are provided at each segment, one can selectively ground that
segment, altering the composition of the divider, and thus altering the
voltage presented to the ADC pin.

In this way, software can determine which switch in the ladder was
selected by reading the resulting A/D data value. The resistor R0 acts as
a pullup to maintain VDD on the analog input line while no keys are
active. Thus, a conversion value of $FF indicates that no key has been
pressed.

Figure 3. Digital Input Alternative

VDD

VIn

ADC
INPUT

R0

R2 R3 R4 R5 R6 R7

K1 K2 K3 K4 K5 K6 K7

R8

K8
AN1775 Rev. 1

4 MOTOROLA

Application Note
Implementation
Considerations Using this method, one can theoretically connect 255 input switches to
one ADC pin. However, there are many potential sources of
inaccuracies, which make it impractical to connect so many key inputs.
One should account for some error padding.

Resistor Precision One inaccuracy is provided by the resistors themselves. Resistors are
categorized according to their variance from a labeled value. The
application should be tolerant to the precision of the resistors being used
(typically, 1 percent or 5 percent). Also, a calculated resistor value might
not be a commonly available value, so the user should plan for a range
of resistor values.

ADC Accuracy Typically, an 8-bit ADC is accurate within two least significant bits. This
should be accounted for as well. The best way to allow for these
tolerances is to assign to each key switch a range of resulting A/D data
register values.

If an analog input falls within a particular range, one can determine that
the key was pressed. By adjusting the range of ADC results which
represent a given keypress, the user can change the error margin for the
application.

To ensure the best ADC accuracy, the full range of the converter should
be used. In cases where the high reference is not variable, it is typically
fixed at the operating voltage.

A spreadsheet is a good way to determine resistor values and A/D result
ranges. An example of computing values for Figure 3 are shown in
Table 1 .
AN1775 Rev. 1

MOTOROLA 5

Application Note
Some notes on the spreadsheet:

• VIn is determined by decrementing the high voltage reference by
the voltage step for each segment in the ladder. (See Figure 4 .)

• Rn is the resistor value of the current key segment needed to form
desired equivalent resistance Req.

• Req represents the equivalent resistance of ladder, including the
current resistor (Rn) and excluding the pullup resistor (R0).

• Vinmin and Vinmax are the minimum and maximum voltages that
can be arbitrated as a particular key. In this case, VIn +/–Vstep/2
was used.

• ADDRmin and ADDRmax are the ADC data register value range
used to represent a given keypress. This range can be narrowed
or widened to affect precision. In this case, the ranges were
maximized, so no conversion result is undefined.

• This particular spreadsheet did not use resistor precision, but this
could be considered to further pad the error.

Table 1. Spreadsheet Calculations

VDD = 5 Converter Resolution = 0.01961 (Vdd/255)

Keys = 8

Voltage Steps = 0.625 (VDD/# Keys) R0 = 10000 (Pullup)

(Hex) (Hex)

Key pressed VIn Req Rn Vinmin Vinmax ADDRmin ADDRmax

No Key 5 0 10000 4.6875 5 EF FF

1 0 0 0 0 0.3125 0 F

2 0.625 1429 1429 0.3125 0.9375 F 2F

3 1.25 3333 1904 0.9375 1.5625 2F 4F

4 1.875 6000 2667 1.5625 2.1875 4F 6F

5 2.5 10000 4000 2.1875 2.8125 6F 8F

6 3.125 16667 6667 2.8125 3.4375 8F AF

7 3.75 30000 13333 3.4375 4.0625 AF CF

8 4.375 70000 40000 4.0625 4.6875 CF EF
AN1775 Rev. 1

6 MOTOROLA

Application Note
Implementation
Figure 4. Voltage Divider

Constants First, VDD (or VREFH, the high reference for the converter) and the
number of keys are determined. The converter resolution is found by
dividing VDD by the converter precision. The number of voltage steps
needed is VDD divided by the number of key switches. An ADC should
always be operated at its full range. The pullup resistor, R0, typically,
should be chosen between 4.7 k (to limit current) to 22 k (to limit time
constant).

Variables Once these constant values are decided, a spreadsheet can be used to
determine the resistor values needed in each segment of the divider
ladder, according to the desired input voltages.

When using an ADC, always use the entire range of the converter
(VREFH – VREFL). This is the reason for determining the voltage steps
first (VDD – n*step value) and then calculating the necessary resistor
values to achieve these voltages through the divider.

For each segment in the ladder, the nth segment’s necessary resistor
value needs to be calculated (Rn in the spreadsheet). When a key is
pressed, the equivalent resistance of the included segment resistors
forms a voltage divider with the pullup resistor.

Given the voltage desired at the ADC input (VIn), the user can determine
the equivalent resistance needed to achieve that voltage by:

Req(n) = (VIn*R0)/(VREFH – VIn)

The resistor that will form the needed equivalent resistance with the
other resistors in the ladder can be determined, as:

Rn = Req(n) – Req(n – 1)

VDD

VIn

R0

REQ(N-1) RN

REQ
AN1775 Rev. 1

MOTOROLA 7

Application Note
The only exception is key 1, which connects VSS to the ADC input and
needs no resistor.

By assigning a range of ADC conversion values to each key, the user
can provide a fair amount of error padding. Considerations include
resistor tolerance, ADC accuracy, and parasitic time constants. The
range of conversion values for a particular keypress can be narrowed to
improve the accuracy of the application. Or, for “quick and dirty”
arbitration, keep the range as wide as possible.

Using a Single
Resistor Value

The method presented here used different resistor values to produce
equal voltage intervals. Another method would be to use the same
resistance value for all segments in the divider. The disadvantage of
using the same resistor values is that it greatly diminishes the effective
range of conversions. Also, if resistances are kept equal, the voltage
step between switches approaches the resolution of the ADC.
Therefore, the error margin diminishes as more keys are added.

Programming
Considerations

There are several ways to implement such an application. One thing to
choose is whether to poll the ADC when desired or link a keypress to an
interrupt source.

Some ADCs continuously convert once enabled, allowing a new value
to be available every 32 clock cycles. Others do a single conversion
when a register is written to and don’t do another conversion until the
register is written to again.

A polling scheme can use a periodic timing source as a signal to poll. For
example, the real-time interrupt (RTI) or timer overflow (TOF) interrupt
can be used to scan the ADC input at a given rate.

Not linking a keypress to an interrupt source can cause timing problems
and might miss a keypress. Careful consideration should be given to
timing and voltage error requirements to determine if this method is
appropriate.
AN1775 Rev. 1

8 MOTOROLA

Application Note
A Brief Example with the MC68HC705P6A MCU
A Brief Example with the MC68HC705P6A MCU

The small code segment example that follows illustrates the software
implementation of this method of keypress arbitration. The example was
defined around the spreadsheet analysis example shown in Table 1 .

The MC68HC705P6A (P6A) MCU features a 4-channel, 8-bit A/D
converter. The P6A ADC uses continuous conversion, making a new
value available every 32 internal clock cycles after being turned on.

The software example assumes a resistor ladder is connected to AD0
(A/D channel 0, port C, pin 6). The software is not intended to be a
complete application.

This software starts the ADC, selects channel 0 for A/D conversions,
then polls the ADC data register to determine if a key was pressed. The
software uses a lookup table, with predefined maximum and minimum
ADC values which represent a specific segment in the divider being
grounded.

Once the key has been arbitrated, the RAM variable InKey will tell an
application which key was switched most recently.
AN1775 Rev. 1

MOTOROLA 9

Application Note
Code Listings

* --
* EXPANDIO.ASM
* Written for the MC68HC705P6A microcontroller
* A code segment example to illustrate the use of the A/D
* converter for key input arbitration
*
* This simple example polls the AD0 channel, compares the
* conversion result to a lookup table, and determines
* which of 8 keys were pressed.
* --

; Memory map equates
RAMSPACE EQU $50
ROMSPACE EQU $100

; A/D Registers
ADC EQU $1D ;A/D Data register
ADSC EQU $1E ;A/D Status and control

; ADSC Bits
CC EQU 7 ;Conversion complete flag
ADRC EQU 6 ;A/D RC oscillator enable
ADON EQU 5 ;A/D enable bit

* --
; RAM Variables
* --

ORG RAMSPACE ;Start of user RAM
InKey RMB 1 ;Identifies the last key pressed
ADValue RMB 1 ;Stores the last ADC result

* --
; Program code
; Simply loops, polling the A/D converter channel AD0
; and determining which key was pressed
* --

ORG ROMSPACE ;Start of user ROM
Start:

LDA #$20 ;Turn on A/D, select AD0 channel
STA ADSC

MainLoop:
BRCLR CC,ADSC,* ;Wait for conversion complete
LDA ADC ;Get the result
STA ADValue ;Record the result
CLR InKey ;Clear the InKey variable
CLRX ;Clear the offset
AN1775 Rev. 1

10 MOTOROLA

Application Note
Code Listings
;Check the entries in the table, to find the ADC value range
;that corresponds to the ADC data register value.
KeyLoop:

LDA KeyTable+1,X ;Check high range
CMP ADValue
BLS Match ;Within range
LDA KeyTable,X ;Check low range
CMP ADVAlue
BLS Match ;Within range
INCX ;Point to next table record
INCX
;Increment the key value, when a match is made,
;the variable will contain the key that was pressed.
INC InKey
BRA KeyLoop

; At this point, InKey variable holds keypress information
; One can arbitrate the key press here. For this simple example
; we just repeat the main loop
Match:

BRA MainLoop

* --
; Key lookup table. Holds the minimum and maximum ADC values
; which identify a particular key in the resistor ladder
* --
KeyTable:
NoKey FCB $EF,$FF ;No key pressed
Key1 FCB $00,$0F
Key2 FCB $0F,$2F
Key3 FCB $2F,$4F
Key4 FCB $4F,$6F
Key5 FCB $6F,$8F
Key6 FCB $8F,$AF
Key7 FCB $AF,$CF
Key8 FCB $CF,$EF

* --
; Vector definitions
* --

ORG $1FFE ;Reset vector
FDB Start
AN1775 Rev. 1

MOTOROLA 11

N

O
N

-
D

I
S

C
L

O
S

U
R

E

A
G

R
E

E
M

E
N

T

R
E

Q
U

I
R

E
D

Application Note
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its
products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts.
Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems
intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a
situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold
Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the
design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution, P.O. Box 5405, Denver, Colorado 80217, 1-800-441-2447 or

1-303-675-2140. Customer Focus Center, 1-800-521-6274
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shinagawa-Ku, Tokyo, Japan. 03-5487-8488
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd., 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
Mfax™, Motorola Fax Back System: RMFAX0@email.sps.mot.com; http://sps.motorola.com/mfax/;

TOUCHTONE, 1-602-244-6609; US and Canada ONLY, 1-800-774-1848
HOME PAGE: http://motorola.com/sps/
AN1775/D

© Motorola, Inc., 1998

Mfax is a trademark of Motorola, Inc.

	Introduction
	Background
	Dedicated Input
	Matrix Input
	ADC Alternative

	Implementation
	ADC Operation
	Resistor Ladder Voltage Divider
	Considerations
	Resistor Precision
	ADC Accuracy
	Constants
	Variables
	Using a Single Resistor Value
	Programming Considerations

	A Brief Example with the MC68HC705P6A MCU
	Code Listings

