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Abstract. This paper presents a new approach to multiobjective optimization based on the principles of
probabilistic uncertainty analysis. At the core of this approach is an efficient nonlinear multiobjective
optimization algorithm, Minimizing Number of Single Objective Optimization Problems (MINSOOP), to
generate a true representation of the whole Pareto surface. Results show that the computational savings
of this new algorithm versus the traditional constraint method increase dramatically when the number of
objectives increases. A real world case study of multiobjective optimal design of a best available control
technology for Nitrogen Oxides (NOx) and Sulfur Oxides (SOx) reduction illustrates the usefulness of this
approach.
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1. Introduction

Multiobjective problems appear in virtually every field and in a wide variety of con-
texts. The importance of multiobjective optimization can be seen by the large number
of applications presented in the literature (Sobol, 1992; Schy and Giesy, 1988; Ohkubo,
Dissanayake, and Taniwaki, 1998; Starkey, Gray, and Watts, 1988; Eschenauer, 1988;
Silverman, Steuer, and Whisman, 1988; Tamiz and Jones, 1996; Olson, 1993; Kumar,
Singh, and Tewari, 1991; NWTRB, 1996; Wood, Greis, and Steuer, 1982; Ferreira and
Machado, 1996; Agrell, Lence, and Stam, 1998; Cohon, Scavone, and Solanki, 1988;
Fu, 2000; Fu et al., 2000; Fu and Diwekar, 2003; Johnson and Diwekar, 2001). Most
of these applications are multiobjective problems of nonlinear nature, which is why we
need tools for nonlinear programming capable of handling multiple conflicting or in-
commensurable (e.g., different units) objectives.

∗ Corresponding author.
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In this paper, we study a multiobjective optimization problem of the form:

minimize fi

(�x)
, i = 1, . . . , k, k � 2,

subject to hI

(�x) = 0, I � 0,

gJ

(�x)
� 0, J � 0,

lj � xj � uj , j = 1, . . . , n,

�x = (x1, . . . , xn).

(1)

The problem under consideration involves a set of n decision variables represented
by the vector �x = (x1, . . . , xn). The equality constraints hI (�x) = 0, I � 0: R

n → R

and inequality constraints gJ (�x) � 0, J � 0: R
n → R are real-valued (possibly nonlin-

ear) constraint functions, and lj and uj are the lower and upper bounds of the decision
variable xj (allowed to be −∞ and/or +∞). Both the equality constraints hI (�x) and in-
equality constraints gJ (�x) are assumed to be continuously differentiable and the feasible
decision region S defined by (1) is assumed to be a nonempty subset of R

n. If I = 0
and J = 0, the problem becomes unconstrained. The decision situation involves k (� 2)
continuously differentiable nonlinear objective functions fk : R

n → R. The vector of
objective functions is f(�x) = (f1(�x), f2(�x), . . . , fk(�x))T or z = (z1, . . . , zk)

T, where
zi = fi(�x) for all i = 1, . . . , k and the feasible objective region Z defined by (1) is as-
sumed to be a nonempty subset of R

n. Without the loss of generality, we assume that all
the objective functions are to be minimized simultaneously (note that an objective of the
maximization type could be converted to one of the minimization type by multiplying
the objective function by −1).

As explained in numerous books and survey articles (Stadler, 1988; Osyczka, 1984;
Yu, 1985; Cohon, 1978; Hwang and Masud, 1979; Steuer, 1986; Zeleny, 1974; Zoints,
1989; Stewart, 1992; Chankong and Haimes, 1983a, 1983b; Chankong et al., 1985;
Evans, 1984; Rosenthal, 1985), it is not possible to find a single solution that would be
optimal for all the objectives simultaneously because of the contradiction and possible
incommensurability of the objective functions. In fact, the solution of a multiobjective
optimization problem is a set of solution alternatives called the Pareto set. For each of
these solution alternatives, it is impossible to improve one objective without sacrificing
the value of another relative to some other solution alternatives in the set. A more formal
definition of Pareto optimality is the following:

A decision vector �x∗ ∈ S is Pareto optimal (also called Edgeworth–Pareto optimal,
the efficient solution, the nondominated, the noninferior, the functional efficient) for
problem (1) if there does not exist another decision vector �x ∈ S such that fi(�x) � fi(�x∗)
for all i = 1, . . . , k and fj (�x) < fj(�x∗) for at least one index j .

An objective vector z∗ ∈ Z is Pareto optimal if there does not exist another objec-
tive vector z ∈ Z such that zi � z∗

i for all i = 1, . . . , k and zi < z∗
i for at least one

index j ; or equivalently, z∗ is Pareto optimal if the decision vector corresponding to it
is Pareto optimal. There are usually many (infinite in number) Pareto optimal solutions.
The collection of these is called the Pareto set. It is from this subset of potential solutions
that the final, preferred decision is chosen by the decision-makers.
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There is a large array of analytical techniques to solve a multiobjective optimiza-
tion (programming) problem; however, the MOP methods are generally divided into two
basic types: preference-based methods and generating methods. Preference-based meth-
ods like goal programming attempt to quantify the decision-maker’s preference, and with
this information, the solution that best satisfies the decision-makers’s preference is then
identified (Diwekar, 2003). Generating methods, such as the weighting method and the
constraint method, have been developed to find the exact Pareto set or an approximation
of it. In this paper, we are concentrating on the constraint method.

The basic strategy in constraint methods (Haimes, Lasdon, and Wismer, 1971;
Cohon, 1978; Zeleny, 1982; Diwekar, 2003) is to transform the multiobjective opti-
mization problem into a series of single objective optimization problems. The idea is
to pick one of the objectives to minimize (say Zl) while each of the others (Zi, i =
1, . . . , k, i �= l) is turned into an inequality constraint with parametric right-hand sides
(εi, i = 1, . . . , k, i �= l). The problem takes the form:

minimize Zl = fl

(�x)
subject to Zi = fi

(�x)
� εi, i = 1, . . . , k, k �= l,

hI

(�x) = 0, I � 0,

gJ

(�x)
� 0, J � 0,

lj � xj � uj , j = 1, . . . , n,

�x = (x1, . . . , xn).

(2)

Solving repeatedly for different values of εi, . . . , εl−1, εl+1, . . . , εk leads to the
Pareto set. This method also needs to obtain solutions for a large number of single
objective optimization problems. Some of the theoretical results of the constraint method
(Miettinen, 1999) are (a) a decision vector x∗ ∈ S is Pareto optimal if and only if it is
a solution of the constraint problem (2) for every l = 1, . . . , k, where εi = fi(x∗) for
i = 1, . . . , k, i �= l, (b) a point x∗ ∈ S is Pareto optimal if it is a unique solution of the
constraint problem for some l with εi = fi(x∗) for i = 1, . . . , k, i �= l, and (c) the unique
solution of the constraint problem (2) is Pareto optimal for any given upper bound vector
ε = (ε1, . . . , εl−1, εl+1, . . . , εk)

T .
The computational burden of the constraint methods is more laborious than the

weighting methods for finding each Pareto solution because the number of constraints
is larger than that of the weighting method, and sometimes no feasible solution can be
found for some particular combinations of the right-hand sides. In reality, the influence
is assumed to be trivial since there are often a much larger number of original constraints
than the number of objectives in large-scale real-world applications. Furthermore, the
constraint method offers the advantages of better control over exploration of the Pareto
set and of being able to locate points anywhere along the Pareto surface. Theoreti-
cally, every Pareto optimal solution of any multiobjective optimization problem can be
found by the constraint method through altering the upper bounds and the function to be
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minimized (Miettinen, 1999). Therefore, in this paper, an efficient multiobjective opti-
mization is developed and rooted in the constraint method to solve large-scale real-world
problems.

Ideally, a method that can generate the whole Pareto set is the most desirable one.
However, the inconvenience here is that the generating process is usually expensive and
sometimes difficult, if not impossible because of the large number of outcomes. Fur-
ther, it is difficult to judge the completeness of the Pareto set for higher dimensions.
In practice, as suggested by Benson and Sayin (1997), instead of trying to generate the
whole Pareto set, one should aim to find a truly global representation of it. Probabilistic
uncertainty analysis methods deal with large amount of data, errors, as well as large-
scale multi-dimensional problems like molecular simulations and dynamics (Kim and
Diwekar, 2002; Sahin and Diwekar, 2002). Therefore, these methods can be used for
representation of the large amount of data encountered in MOP problems. One of the
goals of this paper is to develop an efficient nonlinear multiobjective optimization al-
gorithm based on efficient sampling methods used in uncertainty analysis, to provide
an accurate representation of the whole Pareto set and to compare the performance of
the new algorithm developed in this paper with the traditional constraint method under
various conditions.

The rest of the paper is organized as follows. Section 2 introduces the probabilistic
uncertainty analysis approach to MOP. This section presents a new nonlinear multiob-
jective optimization algorithm based on the Hammersley sequence sampling technique
is introduced. In section 3, computational tests of the new algorithm and the traditional
constraint method are conducted with different nonlinear convex multiobjective opti-
mization problems under various conditions, and the results are compared. In section 4,
the new algorithm is extended to a class of nonlinear nonconvex problems. Also pre-
sented in this study is a large-scale real world case study of designing a novel NOx con-
trol process that also reduces SOx and Carbon Dioxide (CO2). The overall conclusions
are presented in section 5.

2. Uncertainty analysis and the new approach to MOP

This section begins with the description of methods used to represent the complete Pareto
set by a typical multiobjective linear problem. Then the new criteria derived from prob-
abilistic uncertainty analysis are introduced to judge and compare different generating
techniques. The section continues with discussions of various sampling techniques for
uncertainty analysis and the uniformity property of a new sampling technique, followed
by the introduction of a new nonlinear multiobjective optimization algorithm. The basic
programming structure for the new algorithm is also provided at the end of this section.

2.1. Representation

There are few methods that have been published which specifically address the chal-
lenge of representation of multiobjective optimization Pareto surface with many objec-
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tives (Armann, 1989; Benson and Sayin, 1997; Sayin, 2000, 2003). Problems with two
or, perhaps, three objectives permit a clear presentation of the Pareto set through graph-
ical means. If there are more than three objectives, it is no longer possible to see the
Pareto set graphically. An issue to consider is how to represent the Pareto set so that
we can compare different generating methods in a systematical and quantitative way.
In the recent papers Sayin (2000, 2003) addressed this question by presenting a mixed
integer problem for calculation of coverage error. However, her formulation is limited
to multiobjective linear programming problems. Another difficulty with the calculation
of coverage error is that the mixed integer optimization problem size grows consider-
ably with number of objectives. In this work, we are addressing this problem by using
probabilistic uncertainty analysis method used for engineering systems.

The probabilistic uncertainty analysis method involves four steps: (1) assigning
probability distributions to the key input variables, (2) sampling these probability dis-
tributions using efficient sampling techniques, and (3) propagating each sample through
the model, and (4) analyzing the probabilistic output data (Diwekar and Rubin, 1991).
The first two steps are linked to the representation of input uncertainties. To accommo-
date the diverse nature of uncertainties various distribution functions are used. These
distributions provide a way of handling little to large amount of data representation.
Characterization of these distributions involves collapsing the available data in terms
of type of distribution, and the moments of the distribution. Usually, a distribution is
quantified using the first two moments, namely, the mean and the variance. Occasion-
ally other moments are also considered. If there are correlated uncertainties, correlation
structure is used while sampling the distributions of uncertain parameters.

In this paper, we use the same notion of representing the distribution of solutions
in a Pareto surface using the two moments. The mean and variance of an approximate
Pareto surface are used as generalized representations of the whole Pareto set and as
criteria to measure the accuracy of a generating method. It should be noted that in
this surface the objective functions are correlated through decision variables. Therefore,
separate correction check is not required. We adopt the following decision rules for
determining the performance of generating methods:

(1) We estimate the “true” mean and variance of the whole Pareto surface for each prob-
lem by obtaining a very large number of Pareto optimal solutions (approximately
5000–10,000 subproblems) covering the whole Pareto set.

(2) Once the “true” mean and variance are established, the efficiency of different gener-
ating methods is measured by estimating the computational time needed to settle to
within the same accuracy of the “true” mean and variance values. For the same type
of optimality-based methods, the number of single objective optimization problems
(or sub-problems) to be solved can be used as an approximation of the computa-
tional time required. Therefore, the number of sub-problems to be solved to the
same accuracy of the mean and variance of an approximate Pareto surface is used to
compare the efficiency of the new method to the traditional constraint method.
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Table 1
Decision values and objective values for the extreme points for example 1.

x1 x2 Z1 Z2

A 0 0 0 0
B 6 0 −30 6
C 6 2 −26 −2
D 4 4 −12 −12
E 1 4 3 −15
F 0 3 6 −12

The more accurate the mean and variance of an approximate Pareto surface to the
“true” mean and variance of the Pareto surface, the closer the approximate Pareto set is
to the Pareto set. This concept can be easily understood with example 1, problem (3),
borrowed from Cohon (1978) with the difference of changing from a multiobjective
maximization problem to a minimization one.

Example 1 (2 decision variables, 4 constraints, 2 objectives, multiobjective linear pro-
gramming (MOLP)).

Minimize Z1 = −5x1 + 2x2,

Z2 = x1 − 4x2,

subject to −x1 + x2 � 3,

x1 � 6,

x1 + x2 � 8,

x2 � 4,

x1, x2 � 0.

(3)

Example 1 is a multiobjective linear problem (MOLP) for which we have two ob-
jectives, two decision variables, and four constraints. Since it is a simple multiobjective
linear problem, the extreme points are obtained in table 1, and the feasible objective
space is shown in figure 1 with the bold line BCDE as the Pareto set.

Figure 2 shows the differences between two approximate Pareto sets and the Pareto
set when the numbers of sub-problems solved are 5 and 50, respectively. When the num-
ber of sub-problems solved is 5, there is a 10% relative error of the mean and a 150%
relative error of the variance of the approximate Pareto set from the true mean and vari-
ance of the Pareto set. However, when the number of sub-problems solved is 50, the
relative errors of the mean and variance are reduced to 0.7% and 9.5%, respectively.
From figure 2, it is obvious that the more accurate the method is in estimating the mean
and variance of the Pareto surface, the better it is at representing the Pareto set and vice
versa. Therefore, in this paper the mean and variance of an approximate Pareto sur-
face are calculated as generalized representations of the whole Pareto set for generating
methods.
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Figure 1. Objective space for example 1.

2.2. Criteria

Generating Pareto optimal solutions plays an important role in multiobjective optimiza-
tion, and mathematically, the problem is considered solved when the Pareto set is found
for a generating method. However, the actual solutions are perhaps infinite in number.
Therefore, instead of finding the complete Pareto set, in practice it is often sufficient to
find a true representation of the Pareto set. The more realistic target is to approximate
discrete set of Pareto-optimal points (Sayin, 2000, 2003; Lampinen, 2000). Here are the
five criteria we found to judge and compare different generating methods:

(1) Completeness. It can cover the whole Pareto set. For example, in the objective
space of example 1 as shown in figure 1, the bold line BCDE is the Pareto set, and
the completeness in this case means that the Pareto optimal solutions obtained by
generating methods should cover the whole line BCDE, not just a segment of it.

(2) Accuracy is defined in terms of closeness to the mean and variance of the true Pareto
surface.

(3) Computational efficiency. It can obtain an approximate Pareto set with the required
accuracy by solving a minimum number of single objective optimization problems
for optimality-based methods.

(4) Robustness. It can solve different types of problems, like linear, nonlinear convex
and nonconvex multiobjective problems.

(5) Automation. It can automatically formulate and solve a family of single objective
optimization problems, and can generate a representation of the Pareto set.
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(a) Number of sub-problems solved = 5.

(b) Number of sub-problems solved = 50.

Figure 2. The difference between two approximate Pareto sets and the Pareto set with different numbers of
sub-problems solved for example 1.

2.3. Hammersley sequence sampling technique

As discussed in section 1, we think the constraint method is a better candidate as the
basis to develop an efficient new algorithm because it is more robust than the weighting
method. Therefore the focus of this paper is to develop a new multiobjective nonlinear
programming (MONLP) algorithm that is based on the traditional constraint method, but
can obtain significant computational savings as compared to the current method.
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Recall that the constraint method requires us to pick one of the objectives to min-
imize (e.g., Zl), while each of the others (Zi , i = 1, . . . , k, i �= l) is turned into an
inequality constraint with a parametric right-hand side (εi , i = 1, . . . , k, i �= l). By
solving repeatedly for different values of εi, . . . , εl−1, εl+1, . . . , εk, an approximation of
the whole Pareto set is obtained. This involves solving a large number of optimization
problems, as described below.

The algorithm is based on the assumption that the problem is equivalent to the re-
sults of calculating an integral over the space of objectives. Consider the approximation
of an integral of a (k − 1)-dimensional (with a k-objective problem) continuous function
by sampling its values at a finite set of points. One straightforward approach is to place
the points along equally spaced intervals on a (k−1)-dimensional grid, which represents
the traditional constraint method. Although this is a good arrangement, the number of
points required increases rapidly as the number of objectives increases. For example, if
there are six objectives and five of them are evaluated over 10 points for each objective,
we would have to solve 100,000 optimization problems. Alternatively, one can use a
Monte Carlo sampling (MCS) technique, where the points are chosen randomly. The
approximation of the integral is then based on the function evaluation at these points.
On average, however, the error of approximation (from central limit theorem) is of the
order O(N−1/2), which also means the number of points (N) required to keep the er-
ror within ε is bounded by 1/ε2 (Diwekar, 2003). The remarkable feature is that the
bound is not dependent on the dimension (k − 1 in this case). This means MCS meth-
ods are unlikely to scale exponentially with increasing objective functions. However,
MCS methods are based on pseudo-random number generators, and do not have good
uniformity.

Recently, Kalagnanam and Diwekar (1997) developed an efficient sampling tech-
nique called the Hammersley sequence sampling (HSS) technique based on a quasi-
random number generator. It uses the Hammersley points ((Hammersley, 1960), see ap-
pendix A) to uniformly sample a (k−1)-dimensional hypercube, and the results revealed
that the Hammersley points provide the optimal location for the sample points so as to
obtain better uniformity in the (k − 1)-dimension. The main reason for this is that the
Hammersley sequence is a low-discrepancy design for placing n points on a (k − 1)-
dimensional hypercube. In contrast, other stratified techniques such as the Latin hyper-
cube are designed for uniformity along a single dimension and then randomly paired for
placement on a (k−1)-dimensional cube. Therefore, the likelihood of such schemes pro-
viding good uniformity properties on high-dimensional cubes is extremely small. One
of the main advantages of Monte Carlo methods over that of a uniform grid is that the
number of samples required to obtain given accuracy of estimates does not scale ex-
ponentially with number of uncertain variables. HSS preserves this property of Monte
Carlo (Kim and Diwekar, 2003). The number of points required to converge to the mean
and variance of the derived distributions by the HSS method is on average 3 to 100 times
less than the MCS and other stratified sampling techniques (Kalagnanam and Diwekar,
1997).
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Table 2
Payoff table for example 2 (4 decision variables, 3 constraints, 3 objectives).

Z1 Z2 Z3

min Z1 930.863 769.621 1406.023
min Z2 1130.76 651.794 1386.973
min Z3 1161.44 783.55 1316.853

2.4. A new MONLP algorithm – MINSOOP

The new multiobjective optimization algorithm, MInimizing Number of Single Objec-
tive Optimization Problems (MINSOOP), proposed in this paper uses the HSS technique
to generate combinations of the right-hand sides εi (i = 1, . . . , k, i �= l) of the tradi-
tional constraint method. The steps for a multiobjective problem with k objectives (to be
minimized) are listed as follows:

Step 1. Solve k single objective optimization problems individually with the original
constraints of a multiobjective problem to find the optimal solution for each of
the individual k objectives.

Step 2. Compute the value of each of the k objectives at each of the k individual opti-
mal solutions. In this way, an approximation of the potential range of values for
each of the k objectives is determined and saved in a table (called payoff table).
The minimum possible value is the individual optimal (minimizing) solution.
The approximate maximum possible value of the Pareto set is the maximum
value for that objective found when minimizing the other k − 1 objectives indi-
vidually.

Step 3. Select a single objective (e.g., Zl) to be minimized. Transform the remaining
k − 1 objectives into inequality constraints of the form Zi � εi , i = 1, . . . , k,
i �= l and add these new k − 1 constraints to the original set of constraints.
Then the original multiobjective optimization problem is transformed into a
family of single objective optimization problems with parametric right-hand
sides.

Step 4. Select a desired number of single objective optimization problems to be solved
to represent the Pareto set. Using the HSS technique to generate the de-
sired number of combinations of the inequality constraint values εi, . . . , εl−1,
εl+1, . . . , εk within the range determined in step 2.

Step 5. Solve the constrained problems set up in step 4 for every combination of the
right-hand side values determined in step 3. These feasible solutions form an
approximation for the Pareto set.

Consider the nonlinear convex multiobjective problem shown in example 2, with 4
decision variables, 3 constraints and objectives. The upper and lower bounds of the
objectives are shown in the payoff table in table 2.
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(a)

(b)

Figure 3. The performances of different methods for example 2.

Example 2 (4 decision variables, 3 constraints, 3 objectives, MONLP).

Minimize Z1 = (x1 − 8)2 + (x2 − 12)2 + (x3 − 30)2 + (x4 − 10)2,

Z2 = (x1 − 10)2 + (x2 − 7)2 + (x3 − 8)2 + (x4 − 25)2,

Z3 = (x1 − 35)2 + (x2 − 10)2 + (x3 − 12)2 + (x4 − 7)2,

subject to
x1

3
+ x2

10
+ x3

7
+ x4

8
� 1,

x1

15
+ x2

12
+ x3

5
+ x4

10
� 1,

x1

10
+ x2

12
+ x3

8
+ x4

4
� 1,

x1, x2, x3, x4 � 0.

(4)
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Figure 3 shows the mean and variance of an approximate Pareto surface versus
the number of single objective optimization problems (sub-problems) solved by dif-
ferent methods for a nonlinear convex multiobjective problem (4) (example 2), where
the right-hand sides are generated by the equal space code (EQS, represents the tra-
ditional constraint method based on uniform grid), the Monte Carlo sampling (MCS,
pseudo-random number generator), and the Hammersley sequence sampling (HSS). Re-
sults show that the method based on the HSS technique generally requires solving a
fewer number of single objective optimization problems than with both the traditional
constraint method and the method based on the MCS technique to converge to the “true”
mean and variance of the Pareto surface. This illustrates that the new algorithm called
MINSOOP can provide significant computational savings compared to the traditional
constraint method in obtaining an accurate representation of the Pareto set.

Theoretically, every Pareto optimal solution of any multiobjective optimization
problem can be found by the constraint method by altering the upper bounds and the
function to be minimized. To ensure that a solution produced by the constraint method
is Pareto optimal, we need to either solve k different problems or obtain a unique solution
(Miettinen, 1999). In general, the uniqueness is not easy to verify. However, if the prob-
lem is convex and the function fl to be minimized is strictly convex, we know that the
solution is unique without further checking (Chankong and Haimes, 1983b). For the sake
of simplicity, we use all nonlinear convex examples to compare the performance of the
new algorithm with the traditional constraint method in section 3. However, a nonlinear
nonconvex example is also provided in section 4 to demonstrate that the new method is
able to generate a representation of the whole Pareto set for nonlinear nonconvex prob-
lems. Further improvement of a nonlinear optimizer to overcome the local minimum
problem is discussed in section 4 as well so that a representation of the global Pareto set,
instead of the locally Pareto set of a nonlinear nonconvex problem will be obtained.

3. Computational tests

In this section, we present the results of our computational tests for comparing the
MINSOOP algorithm developed in this paper with the traditional constraint method.

3.1. Tests design

For the sake of simplicity, all examples used here have nonlinear convex objective func-
tions and linear constraints. The general form of the examples is described in (5), and
there are k objectives to be minimized, m inequality constraints, and n decision variables.

Minimize Zi =
m∑

j=1

(xj − aij )
2, i = 1, . . . , k, k � 2,

subject to
m∑

l=1

xj

blj

� 1, m � 0,

xj � 0, j = 1, . . . , n.

(5)
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As proved by Yu (1985), the Pareto set for the above kind of problems is convex,
and according to Chankong and Haimes (1983b) we know that every solution of each
single objective optimization problem is Pareto optimal without further checking.

Next, results from a large number of numerical tests are presented. The design of
the tests included varying the number of sub-problems solved, the numbers of decision
variables, constraints and objectives involved, and comparing results with different ac-
curacies of approximate Pareto sets representations. The details of the test design are as
follows:

• MONLP methods. The traditional constraint method and the new MINSOOP algo-
rithm are compared.

• Number of sub-problems. The number of sub-problems solved is varied from 10 to
100,000 for each case study.

• Number of decision variables. The number of decision variables ranges from 2 to 5,
with the fixed 3 constraints and 3 objectives.

• Number of constraints. The number of constraints ranges from 2 to 5, with the fixed
4 decision variables and 3 objectives.

• Number of objectives. The number of objectives ranges from 2 to 5, with the fixed 4
decision variables and 3 constraints.

• Accuracy. The accuracy of the mean of approximate Pareto surfaces is varied from
99% to 99.9%, and the accuracy of the variance of approximate Pareto surfaces is
changed from 80% to 99%.

3.2. Efficiency of the MINSOOP algorithm

Ten nonlinear convex multiobjective examples are studied here, each corresponding to
different numbers of decision variables, constraints, and objectives. Similar results, as
shown in figure 3, are also found for each of these problems. Due to the length of this
paper, the complete figures of the mean and variance of an approximate Pareto surface
versus the number of sub-problems solved by the traditional constraint method and the
new MINSOOP algorithm for these problems (Fu, 2000) is not repeated here. In gen-
eral, the larger the number of sub-problems solved, the closer the mean and variance of
an approximate Pareto surface is to the “true” mean and variance of the Pareto surface.
When the number of sub-problems is very large, both the new and traditional methods
converge to the same “true” mean and variance of the Pareto surface. However, MIN-
SOOP requires solving a fewer number of single objective optimization problems in or-
der to converge to the “true” mean and variance of the Pareto surface as compared to the
traditional method. This illustrates that the MINSOOP algorithm can offer significant
computational savings and make it practical to use it for solving large-scale real-world
problems.



122 FU AND DIWEKAR

Table 3
The efficiency of the new algorithm to the traditional constraint method for different numbers of decision

variables.

Number of decision variables 2 3 4 5

NEQS/NHSS for 99.9% of mean 163 8 14 9
NEQS/NHSS for 99% of variance 3 20 225 40

Note. Where N denotes the number of sub-problems solved. The subscript EQS and HSS correspond to
equal space and HSS methods.

3.3. Effect of number of decision variables

We changed the number of decision variables for the three constraints and three objec-
tives representation of the problem (5). Results indicate that the number of nonlinear
sub-problems needing to be solved for a fixed accuracy has no obvious relationship to
the number of decision variables for both methods. However, the new algorithm (using
HSS) usually solves for fewer sub-problems than the traditional method (using EQS), as
indicated table 3.

3.4. Effect of number of constraints

When the number of constraints varies from two to five, it has been found that the number
of nonlinear sub-problems needing to be solved for fixed accuracy is not sensitive to the
number of constraints for both methods. However, the new algorithm usually requires
fewer nonlinear sub-problems to be solved than the traditional method.

3.5. Effect of number of objective functions

Figure 4 shows the number of nonlinear sub-problems solved in an approximate Pareto
surface versus the number of objectives using the same accuracy for both methods (e.g.,
99.9% of the mean and 99% of the variance). Results show that the number of nonlinear
sub-problems needing to be solved for the fixed accuracy increases rapidly as the number
of objective functions increases for the traditional constraint method. However, there
is no significant increase for the new algorithm as the number of objectives increases.
This indicates that the computational savings by using the new nonlinear multiobjective
optimization algorithm increases dramatically as the number of objectives increases.
This result is particularly important, as the computational burden for large number of
objectives is often extreme for all other multiobjective procedures.

3.6. Effect of accuracies

As discussed in the earlier studies, the number of nonlinear sub-problems needing to be
solved by the new algorithm is generally less than the number needed with the traditional
constraint method in order to obtain the same accuracy for the mean and variance of an
approximate Pareto surface. In other words, by solving the same number of nonlinear
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(a) (b)

Figure 4. Compare the new algorithm and the existing constraint method with different numbers of objective
functions.

sub-problems, the new algorithm usually attains a higher accuracy for the mean and vari-
ance of an approximate Pareto surface than can be obtained with the traditional method.
Also, when the accuracies of the mean and variance of an approximate Pareto surface
increase, the new algorithm is a better choice since the number of sub-problems to be
solved by the traditional method increases rapidly as compared to the new algorithm.
This means the new algorithm can provide even more significant computational savings
as compared to the traditional constraint method when the accuracy demands are high.

4. Nonlinear nonconvex multiobjective problems

Theoretically, every Pareto optimal solution of any multiobjective optimization problem
can be found by the constraint method by altering the upper bounds and the function to
be minimized. It must be stressed that even duality gaps in nonconvex problems (see
Miettinen (1999), Chankong and Haimes (1983b)) do not disturb the functioning of the
constraint method. If a problem is convex and the function fl to be minimized is strictly
convex, then the solution produced by the constraint method is Pareto optimal without
further checking. When the problem is nonconvex, we have to ensure that a solution is
a unique solution. However, computationally, the uniqueness conditions are not always
satisfied. In this section, a complete efficient nonlinear nonconvex example is used to
demonstrate that the new algorithm inherits the robustness of the traditional constraint
method, and then suggestions for improving a nonlinear optimizer to obtain globally
Pareto optimal solutions for a general nonlinear nonconvex problem are discussed as
well.
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4.1. Real world case study

On September 24, 1998, new regulations announced by the US EPA require 22 East-
ern States plus the District of Columbia to develop state implementation plans to reduce
ground-level ozone through the reduction of nitrogen oxide (NOx) emissions (Cooper,
1998). This plan calls for a 28% NOx cut in the summer time (1.2 million tons) by 2007.
This calls for utilities to develop new, efficient, and robust post-combustion NOx con-
trol technologies. A novel environmental control technology called Low Temperature
Oxidation (LTO) system, which can reduce NOx emissions below measurable levels
(2 ppm) using process analyzers at low temperature (125–325◦F), was awarded Best
Available Control Technology (BACT) and Lowest Available Emission Reduction tech-
nology (LAER) by the US EPA in April 1998. This technology also won the 2001 Kirk-
patric award by chemical engineering magazine. In LTO, ozone is employed to oxidize
nitric oxide (NO) to dinitrogen pentoxide (N2O5) at a low temperature in an oxidizer,
which is then easily absorbed by water in a scrubber. Bench scale and pilot plant tests
have shown that the LTO process can reduce the NOx emissions below the measurable
levels using process analyzers (almost complete removal). This proved that the LTO
system is an attractive process to meet the stricter NOx regulations. There are multiple
benefits of the LTO system besides removal of NOx emissions, includes reduction of
SOx and CO emissions, and no secondary air emissions (NH3, N2O). In order to obtain
minimum NOx emissions, extra ozone needs to be supplied. The cost of the process also
increases nonlinearly as emissions decrease. This poses a challenging multiobjective
optimization problem where emissions like NOx and SOx need to be minimized, while
minimizing the system cost as well as extra ozone. This problem is addressed here using
the new and efficient multiobjective optimization MINSOOP algorithm.

Figure 5 shows the LTO process diagram for industrial boiler application. In fig-
ure 5, the exhaust gases from the boiler are cooled in a high temperature economizer,
giving up heat to preheat the boiler feed water. The gas is then cooled to its dew-point
temperature in the condensing economizer and a portion of the water vapor in the gas is
condensed. Ozone is injected into the gas as it leaves the condensing economizer and is
thoroughly mixed with the gas in a static mixer. The NOx in the gas is oxidized in the
oxidation chamber to dinitrogen pentoxide (N2O5), with part of CO is oxidized to CO2

and SO2 is oxidized to SO3. The pentoxide forms nitric acid vapor as it contacts the
water vapor in the gas, and similarly, sulfite acid, sulfate acid, bicarbonate, and carbon-
ate acid vapors are formed. Then nitric acid vapor is absorbed in the scrubber as dilute
nitric acid and is then neutralized by the dilute sodium carbonate in the scrubber form-
ing sodium nitrate. Accordingly, sodium bicarbonate, sodium carbonate, sodium sulfite,
sodium sulfate are produced. These dilute salts can be disposed to the sanitary sewer
system for small-scale industrial boilers. For large-scale systems, byproduct recovery
can be an option. In practice in order to obtain minimum NOx emissions, extra ozone
is added to the system, which not only increases the system cost but also causes ozone
slip. Therefore, a feedback system is installed at the top of the scrubber of the LTO
process. When the NOx emissions are high, the feedback system can control the ozone
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Figure 5. The low temperature oxidation (LTO) process diagram for small-scale industrial boiler applica-
tions.

generator to provide more ozone. When the ozone concentrations are high, the feedback
system can inform the ozone generator to reduce ozone generation. In this way, ozone
slip can be minimized. The drawbacks are (1) the sensor of the feedback system is quite
expensive and requires high maintenance cost and (2) the system is actually operated
dynamically instead of in steady state. Here our optimization approach to solve this
problem is to add another constraint to make sure that the ozone slip is less than or equal
to the allowable limit (which can be easily changed according to customer’s request).

In our previous works, a detailed model of the LTO process based on a non-
equilibrium modeling technique consisting of large-scale differential algebraic system
was developed (Fu, 2000; Fu et al., 2000) and two major bottlenecks involved in mod-
eling this system such as numerical difficulties and two-point boundary value problem
were solved as well (Fu et al., 1999). The model is computationally intensive and MOP
increases the computational load significantly. We had to use distributed computing sys-
tem to obtain the optimal solutions in a reasonable amount of time. Therefore, this case
study is a good candidate for testing the performance of the MINSOOP algorithm. It
should be noted here that we are using the older LTO technology for this analysis. The
new technology removes SOx and CO emissions more efficiently than the results showed
in this paper. The multiobjective case study presented in this paper does not include the
ozone destruction part of the scrubber in the detail model; the ozone slip is assumed to
be less than 5 ppm in the current study. In the future, the model will include the ozone
destruction reactions, and minimizing ozone slip would be included as an additional
objective with ozone destruction scrubber parameters as additional decision variables.
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4.1.1. Formulating the multiobjective optimization problem
In this case study, we would like to provide optimal design alternatives for the LTO
process in order to reduce pollutant emissions of a 400 HP boiler operated at a 60%
load condition (Suchak, 2000) with a 10713 pounds/hour of flue gas, with 39 ppm NOx,
500 ppm SOx, and 10 ppm CO at the temperature of 78◦F and pressure of 1 atm. The
capital cost for the system is spread over a 10-year period. The multiobjective optimiza-
tion formulation for this case study is described in problem (6) below:

minimize NOx emissions,
SOx emissions,
Cost,

subject to Error in predicting concentrations of input liquid
of the scrubber � 10−6,

O3 emission � 5 ppm,

xLj � xj � xUj , j = 1, . . . , 13.

(6)

Here the NOx and SOx emissions and cost are minimized concurrently. At the
same time, the error in predicting concentrations of input liquid of the scrubber is less
than or equal to 10−6 so as to ensure the model’s accuracy and ozone emission is less
than or equal to 5 ppm to guarantee low ozone slip. Here we choose 13 key decision
variables that are identified to be important to the LTO process’s performance, cost,
and model’s accuracy according to the engineering knowledge and previous modeling
experience. The details of these decision variables are defined in table 4. It can be seen
from table 4 that only 6 variables (x1, . . . , x6) out of the 13 decision variables are the
real decision variables. The rest of them are intermediate variables used by the optimizer
to ensure the model’s accuracy due to the two-point value problem in the scrubber (Fu
and Diwekar, 2003). The other variables are embedded in the model as this problem
involves a large model with large number of stiff nonlinear differential equations. The
ranges and the base design variables are determined by heuristics and experience with
this process.

4.1.2. Generating the payoff table
The nonlinear optimizer is employed to solve three single objective optimization prob-
lems separately, keeping the error in predicting concentrations of input liquid of the
scrubber less than or equal to 10−6 and ozone emissions less than or equal to 5 ppm for
each of the three objectives. The optimizer is started from 50 different randomly gener-
ated initial points and the minimum value is retained as the optimal solution due to the
nonlinear nonconvex nature of the problem. Then the values of the other two objectives
are calculated at each of the three optimal solutions. These objective values are listed in
the payoff table shown in table 5. In this way, an approximation of the potential ranges
for all three objectives in the Pareto set is determined.
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Table 4
The bounds and the base design values of the key decision variables for the multiobjective optimization

case study of the LTO process.

Symbols xj Name of key decision Unit Lower Upper Base
variable xj bound bound design

xLj xUj xoj

x1 Diameter of the oxidizer m 0.5 1.5 0.762
x2 Length of the oxidizer m 2.0 20 24.4
x3 Mole ratio of O3/NOx mole/mole 1.0 2.0 1.6
x4 Diameter of the scrubber m 0.5 1.5 0.914
x5 Length of the scrubber m 1.0 2.5 1.524
x6 Liquid flow rate of the scrubber gallon/min 50 150 85
x7 Liquid output concentrations of NaHCO3

* mole/mole of H2O 1.0E−6 1.0E−2 **

x8 Liquid output concentrations of Na2CO3
* mole/mole of H2O 1.0E−6 1.0E−2 **

x9 Liquid output concentrations of Na2SO4
* mole/mole of H2O 1.0E−6 1.0E−2 **

x10 Liquid output concentrations of Na2SO3
* mole/mole of H2O 1.0E−6 1.0E−2 **

x11 Liquid output concentrations of NaNO2
* mole/mole of H2O 1.0E−6 1.0E−2 **

x12 Liquid output concentrations of NaNO3
* mole/mole of H2O 1.0E−6 1.0E−2 **

x13 Liquid output concentrations of O3
* mole/mole of H2O 1.0E−6 1.0E−2 **

* Intermediate variables that are used by the optimizer to keep the error in predicting the input liquid con-
centrations in the scrubber (due to the two-point boundary value problem) less than or equal to 10−6 to
ensure the model’s accuracy.

** Values for these intermediate variables are automatically calculated by the optimizer with minimizing
the error in predicting the input liquid concentrations in the scrubber as the objective.

Table 5
Payoff table for the case study of the LTO process.

Objective Symbol i NOx emissions SOx emissions Cost PError
* Extra ozone

(ppm) (ppm) ($/hr) (ppm)

Min NOx emission 1 4.907 129.7 16.65 1.0E−6 4.976
Min SOx emission 2 8.667 72.85 15.64 1.0E−6 5.0
Min cost 3 35.55 294.9 13.77 4.5E−7 2.227

Lower bound ZiL 4.907 72.85 13.77
Upper bound ZiU 35.55 294.9 16.65

* PError means error in predicting concentrations of input liquid of the scrubber.

4.1.3. Formulating a family of single objective optimization problems
Once the lower and upper bounds for each of the three objectives are obtained, the orig-
inal multiobjective optimization problem is then transferred into a family of single ob-
jective optimization problems in the general form as follows.
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Minimize cost
subject to NOx emissions � Rh_NOx,

SOx emissions � Rh_SOx,
Error in predicting concentrations of input liquid
of the scrubber � 10−6,
O3 emission � 5 ppm,
xLj � xj � xUj , j = 1, . . . , 13.

(7)

In this case study, cost is selected as the objective to be minimized, NOx and
SOx emissions are transferred into inequality constraints with two parametric right-hand
sides, Rh_NOx and Rh_SOx, and these two new constraints are added to the original
constraints of the multiobjective optimization problem. In this way, the original mul-
tiobjective optimization problem is transformed into a family of single objective opti-
mization problems. Here we choose to generate 100 additional single objective opti-
mization problems by efficiently and uniformly changing the bounds of Rh_NOx and
Rh_SOx within their lower and upper bounds defined in table 5 (Rh_NOx within 4.907–
35.55 ppm, Rh_SOx within 72.85–294.9 ppm) using the Hammersley sequence sampling
technique. In the next subsection the nonlinear optimizer will be employed to find a set
of minimum cost designs (optimal), which satisfy the corresponding limits for the NOx
and SOx emissions specified in the current subsection.

4.1.4. Obtaining Pareto optimal solutions
Solving the appropriately formulated single objective optimization problems for every
combination of the right-hand side values determined by the Hammersley sequence
sampling technique using the nonlinear optimizer, a set of optimal design alternatives
are obtained. This includes 103 (3 initial single objective optimization problems plus
100 additional transformed single objective optimization problems) optimal solutions.
These optimal solutions form an approximation for the Pareto set of the LTO process for
this case study. If a decision-maker knows his/her target, he/she can search from these
103 optimal designs to find the final design that is the most appropriate one to fit the
decision-maker’s implicit value function. However, in most of the cases, the decision-
maker would rather know the characteristics of the problem and the tradeoffs information
among objectives before making his/her choice, which will be provided in details in the
next subsection.

In order to look into the details of the nonlinear part of the Pareto surface, the
contour plot of the approximate Pareto surface is drawn in figure 6. Three major things
catch our attention. First, designs within the small circle with a $15.1/hour cost, about
25 ppm NOx emissions, and 250 ppm SOx emissions, can be dominated by a large num-
ber of designs located down and to the left, which have the same or less cost, lower NOx
and/or lower SOx emissions. Second, designs in the circle with a $14.4/hour cost at the
top-right corner of the contour figure, can be conquered at least by designs in the same
cost circle on its left, which have lower NOx emissions and similar SOx emissions, and
also by designs with the same cost but lower SOx emissions, and similar NOx emissions
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Figure 6. Contour plot of the approximate Pareto surface for the case study.

underneath. At this point, we can say that, by using multiobjective optimization ap-
proach we can take some advantage of the nonlinear non-convex feature of the problem
to eliminate bad designs. Furthermore, figure 7 also shows that the cost tends to increase
rapidly when the concentration of NOx emissions is low (< 8 ppm) because the spacing
of the $0.3/hour cost contour lines, with respect to the NOx emissions, is much closer
than in the higher NOx emissions region (� 8 ppm). Another important issue that can
be addressed by the multiobjective optimization approach is to provide explicit tradeoff
information among different objectives and offer a reasonable number of attractive good
designs for the decision-maker so that he/she can identify the final compromise design(s)
for implementation. From the MOP decision and objective surfaces, we could identify
four distinctive groups (I–IV) in these Pareto sets.

In the first group, all four designs are good candidates if the decision-maker wants
to improve the base design in all objectives and satisfy the extra ozone constraint in the
current case study. If the goal of the decision-maker is to see the potential ability of the
LTO process for the SOx emissions removal and he/she is willing to sacrifice slightly in
cost over the base design, then the two optimal designs in group II are better candidates.
When the aim of the decision-maker is to reduce much more NOx emissions and have
better greater SOx emissions removal than the base design with more tolerance for cost
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Figure 7. Normalized objectives of the 104 (the base design and 103 optimal designs) different designs for
the case study of the LTO process.

increases, then the four optimal designs in group III are better choices. As the target of
the decision-maker changes to reduce cost with a small sacrifice in NOx emissions, then
the two optimal designs of group IV might sound attractive.

However, in-spite of the distinctive characteristics of the above four groups, there
are also some common elements that can be found. They are summarized in that good
designs tend to have (1) a larger diameter of the oxidizer, which can help to reduce
more NOx emissions, (2) a smaller diameter of the scrubber which can cut the scrubber
cost while reducing more SOx emissions, (3) a taller scrubber which can also remove
more SOx emissions, (4) a larger liquid flow rate which can reduce both SOx and NOx
emissions, and (5) a smaller ratio of scrubber cost/oxidizer cost, which indicates the
tradeoff between the oxidizer and scrubber.

It is worth re-emphasizing that we tend to use the nonlinear, nonconvex nature of
the problem to choose designs that have a much better SOx emissions reduction rate and
have similar NOx emissions and cost compared to the designs nearby whenever this is
possible (figure 7). Thus far, the original 103 optimal designs have been screened to a
reasonable number of the potentially attractive designs in four different groups, which
will help the decision-maker to identify his/her final choice.
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5. Conclusions

This paper dealt with an important problem in multiobjective nonlinear programming,
i.e., improving the computational efficiency of the MOP methods in order to solve large-
scale real-world problems. Criteria used to compare different generating techniques are
proposed, with the mean and variance of an approximate Pareto set calculated in order
to evaluate the performance of a generating method for representing the whole Pareto
set. A new nonlinear multiobjective optimization algorithm − MINSOOP, based on
the Hammersley sequences sampling technique, has been developed and compared with
the traditional constraint method intensively. Different numbers of sub-problems with
different numbers of decision variables, constraints and objectives are solved for a set
of nonlinear convex examples. Demonstration of the MINSOOP algorithm to obtain a
representation of the whole Pareto set with nonlinear nonconvex multiobjective problems
has also been given by a nonlinear nonconvex complete efficiency example and a real
world case study.

The computational tests of the MINSOOP algorithm and the traditional constraint
method to generate a true representation of the whole Pareto set have led us to make the
following comments:

(1) The uniformity property of the Hammersley sequence sampling technique appears
to be instrumental to the success of the MINSOOP algorithm.

(2) The convergence of the MINSOOP algorithm is much faster than with the traditional
constraint method, which indicates significant computational savings by using MIN-
SOOP algorithm.

(3) The performance of the new algorithm is not observed to be sensitive to the in-
creased number of decision variables and constraints in terms of the number of
nonlinear sub-problems to be solved for the same accuracy. However, increasing
the number of decision variables and constraints will somehow increase the CPU
time needed to solve each of the single objective nonlinear sub-problems. There-
fore, the CPU time will actually increase with the increased number of variables
and constraints.

(4) The computational saving of the MINSOOP algorithm versus the traditional con-
straint method increases dramatically when the number of objectives increases. This
indicates that the MINSOOP algorithm is particularly fitting in situations where
there are more than two objectives.

Experimental results obtained so far are encouraging. We have solved a number of
relatively small problems having both nonlinear convex and nonconvex objectives. For
all problems, the MINSOOP algorithm can converge to the “true” mean and variance of
the Pareto set quite faster than the traditional constraint method. This illustrates that the
new nonlinear multiobjective optimization algorithm can offer significant computational
savings and better accuracy.
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Appendix A. The Hammersley points (Diwekar, 2003)

This appendix provides a definition of the Hammersley points and explicate a procedure
for it’s design. Any integer n can be written in radix-R notation (R is an integer) as
follows:

n ≡ nmnm−1 . . . n2n1n0 = n0 + n1R + n2R
2 + · · · + nmRm,

where m = [logR n] = [ln n/ ln R], the square brackets denote the integral part.
A unique fraction between 0 and 1 called the inverse radix number can be constructed
by reversing the order of the digits of n about the decimal point as follows:

φR(n) = 0.n0n1n2 . . . nm = n0R
−1 + n1R

−2 + · · · + nmR−m−1.

The Hammersley points on a k-dimensional cube is given by the following sequence:

�zk(n) =
(

n

N
, φR1(n), φR2(n), . . . , φRk−1(n)

)
, n = 1, 2, . . . , N,

where R1,R2, . . . , Rk−1 are the k − 1 prime numbers where R1 is the first prime number
selected randomly. The Hammersley points are �xk(n) = 1 − �zk(n).
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