Up Your R Game

James Taylor, Decision Management Solutions
Bill Franks, Teradata
Today’s Speakers

James Taylor
CEO
Decision Management Solutions

Bill Franks
Chief Analytics Officer
Teradata
Polling question 1

• Polling question 1 in the beginning of the session.
 > What best describes your companies use of R today?
 - No R plans in the near future
 - Exploring or experimenting with R
 - Plans to use R for analytics
 - Actively using R for model development only
 - Actively using R for model development and deployment.
Introducing R
Introducing Open Source R

- The R Project for Statistical Computing
- Interpreted language for statistical computing
 - Extensible
 - Free
 - Open source
 - Since 1997
 - 5,000 Packages
R has become significant in recent years

Data Miners using R

70% of data miners report using R

24% of data miners select R as their primary tool

Packages for R

http://r4stats.com/articles/popularity/
Enterprise Analytic Requirements
Enterprise analytic challenges

- Clear sense of the analytic objective
- Powerful data exploration
- Seamless, scalable deployment
- Scalable preparation, modeling, evaluation

CRISP-DM

©2014 Decision Management Solutions
Clear sense of the analytic objective

Link Business Action

To Analytics
Powerful data exploration

Volume Velocity Variety Veracity
Scalable preparation, modeling, evaluation

1. Integrate all the data
2. Work freely with the data
3. Model with a wide variety of tools
4. Iterate rapidly to see what works
5. Ensembles matter
Seamless, scalable deployment

Knowing is not enough

Operational Systems

Analytic Systems

Decision
Seamless, scalable deployment

Rapid deployment

Batch and real-time deployment

Scalable deployment
Challenges of Open Source R
Enterprise scale analytics and R

- Clear sense of the analytic objective
- Powerful data exploration
- Scalable preparation, modeling, evaluation
- Seamless, scalable deployment

- Complex data integration
- Scaling data understanding
- Time to analyze
- Deployment
- Industrializing for scale
Complex data integration is a challenge

New sources drive data volume in Big Data

Columnar
Hadoop
NoSQL
Relational
Warehouse

Successful analytic teams use increasing variety of data
Scaling data understanding is a challenge

More data, more time and effort

Single-threaded
Parallel execution?
In-memory
Forced sampling
Limits iteration
Time to analyze is a challenge

- R users like their tools
 - Lots of algorithms
 - Easy to modify and fine tune

- But
 - Takes longer to do data analysis
 - Tool limit challenges more likely
 - Scaling up a challenge
Deployment is a challenge

“Knowing is not enough; we must apply. Willing is not enough; we must do.”

Johann Wolfgang von Goethe

1/3 projects have serious deployment challenges

More likely to not use results

Unhappy with ease of deployment
Cottage industries don’t scale
Industrialization is a challenge

From
- Local scripts or code
- Hand crafting
- A focus on model creation
- Individual creators

To
- Managed workflows
- Automated scale
- A focus on model management
- Broad participation and collaboration
R for Enterprise Analytics

- Complex data integration
- Scaling data understanding
- Time to analyze
- Deployment
- Industrializing for scale
Polling question 2:

Polling question 2 between transition from James to Bill. What are your biggest challenges with R? (select all that apply)
 Complex data integration
 Scaling data understanding
 Time to analyze
 Deployment
 Industrializations
 Others _________________________
LIFTING THE LIMITATIONS OF OPEN SOURCE R

Bill Franks
Chief Analytics Officer
Teradata
The Case For A Discovery Platform

The Problem

Data Warehouse/ Business Intelligence

Advanced Analytics

The Solution

SQL Framework Access Layer

Integrated Data Warehouse (IDW)

Hadoop

Integrated Discovery Platform (IDP)

Data Platform

Text

Graph

Text

Graph

SQL

101010

0010

PATH

MAPREDUCE

PIG, AVA

R

STATS

101010

0010

SQL

GRAPH

TEXT

R

PATH

MAPREDUCE

PIG, AVA

STATS

Data Warehouse (IDW)

Graph
Tackle R’s Challenges With Aster R!

- Complex Data Integration
- Scaling Data Understanding
- Time To Analyze
- Deployment
- Industrialization
Open source R without limitations

- Run open source R across Aster’s MPP architecture for high speed parallel processing
- Remove memory and data limitations with in-database processing for massive scalability
- Leverage all data vs. samples for deeper insights

Unmatched ease-of-use and productivity for R users

- Use familiar R client & R language with Aster through Aster R Library
- Expose Aster Discovery Portfolio functions as R functions
- Leverage open source R with no new tools or languages to learn

Powerful analytics combining Aster and R

- Combine 100+ Aster Discovery Portfolio functions and 5,000+ R packages for powerful analytics
- Integrate R into Aster’s SNAP Framework for rapid discovery
- Empower users with a single comprehensive analytic platform
Teradata Aster R Components

- **Aster R Parallel library**
 - R functions running in full system level parallel mode
 - R interface for Aster Discovery Portfolio (MapReduce) functions

- **Aster R Parallel Constructor**
 - Allows R users to parallelize any R code using split-apply-combine
 - R engine runs in node independent fashion across all Aster nodes

- **R Engine in the SNAP Framework**
 - Access to any data store, including Hadoop and Teradata
 - R script can invoke SQL, MapReduce, Graph and R engines
 - Optimal processing with SNAP’s integrated optimizer and executor
R Implementation Options

<table>
<thead>
<tr>
<th>Architecture</th>
<th>Client/Server</th>
<th>Distributed Computing</th>
<th>In-database: Node Level</th>
<th>In-database: System Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data access</td>
<td>Data extracted from dbs to client</td>
<td>Data extracted from dbs onto servers</td>
<td>Rows and partitions accessible by the node</td>
<td>Access to all the data within the system</td>
</tr>
<tr>
<td>Processing</td>
<td>In-memory of the client</td>
<td>Runs independently in-memory in each server. Coding required for system level parallel processing</td>
<td>Runs independently within each node. Coding required for system level parallel processing</td>
<td>Runs in coordinated parallel manner, often iterating</td>
</tr>
<tr>
<td>Results</td>
<td>Single result based on limited data set</td>
<td>Results are returned from each server</td>
<td>Results are returned from each node</td>
<td>Single result is produced from all data</td>
</tr>
</tbody>
</table>

Where processing takes place.
Node Versus System Parallelism

• When R runs independently on each node/server, the onus is on the programmer to code correctly to handle node parallelism

Node Level
1. Find Mean per node
2. Return 1 answer per node or
3. Calculate mean of mean = 3.5 (X)

System Level
1. Calculate count and total for each node
2. Aggregate counts (11) and total (33)
3. Calculate mean total/count = 3 (Correct!)
Aster R Library – Prebuilt Parallel Functions

• Aster R functions run in system parallel mode across all data
 > Prebuilt parallel functions to hide the complexity of parallel programming
 > Allows users to process all data without the need for sampling

• Familiar R language syntax

• Leverages virtual data frames
 > Users operate on virtual data frames that point to tables or views in the database

• Extend R capabilities with Aster Discovery Portfolio functions
 > Allows R to invoke Aster MapReduce functions running in system parallel mode
Teradata Aster R Prebuilt Parallel Functions

- **Data Access and Movement**
 > Connect, query, Teradata & Hadoop access via QueryGrid, bulk load & extract, import/export data into tables, read & write csv, and more...

- **Data Management**
 > Create data frames, refresh, and more...

- **Data Exploration**
 > Data characteristics, statistics, ranges & distributions, rank, and more...

- **Data Transformation and Manipulation**
 > Pivot, log parser, unpack/pack, split, matrices, and more...

- **R Operators**
 > [., [[]], $ -, !, +, /, *, %%, ==, !=, and more...

- **Path & Time Series Analysis**
 > nPath, sessionization, and attribution

- **Statistical Analysis**
 > Regressions, Naïve Bayes, support vector machine, regressions, correlations, averages, histogram, Principal component analysis, and more...

- **Text Analysis**
 > Sentiment analysis, text processing, ngram, text classifier, and more...

- **Machine Learning**
 > Kmeans, basket, collaborative filter, random forest, and more...
Aster R Parallel Constructor

- Allows users to run open source R scripts in Aster in parallel

- Users can run any open source R code in parallel with ta.apply()
 - Accepts a data frame as input
 - Runs an R script across a single or multiple nodes concurrently
 - Runs R script using the split-apply-combine strategy
 - Similar to Map-Reduce constructs

- How It Works
 - ta.apply()
 - Apply first R script to each node
 - Apply second R combiner script to the results of the first
Aster R Parallel Constructor Example

Calculating Average with all the data

- Data is distributed across the nodes
- Ex. Calculate average sales to date

```r
banking_df = ta.data.frame("ich_banking")

part_sumcnt <- function(x) list(sum = sum(x), count = length(x))
comb_avg <- function(x) sum(x$sum) / sum(x$count)

ta.aggregateApply(
  banking_df,
  FUN = part_sumcnt,
  FUN.result = "list",
  COMBINER.FUN = comb_avg)
```

Create a view in Aster for parallel data ingest

User defined R functions executed in parallel with partitioned data in-place

Runs the function on each vworker node, reduces the results from each partition
Deploying Analytics with Aster R

• **R interface for Aster Discovery Platform**
 > R users now have access to the powerful Aster Discovery Platform

• **Multi-faceted analytics**
 > A single program can call SQL, MapReduce, Graph, or R engines

• **Access to any data across the Teradata UDA**
 > Data from Teradata and Hadoop are accessible through Teradata QueryGrid
A DAY IN THE LIFE OF AN R ANALYST

Up Your R Game!
Complex Data Integration
Across Multiple Data Sources

• Traditional R
 > Create data frames for big data?
 “Error: cannot allocate vector of size 10 GB”
 > Forced to sample data

• Aster R
 > Easy Access to Hadoop and DW
 - Create views
 CREATE VIEW hadoop_view as (SELECT *
 FROM load_from_hcatalog
 (TABLENAME('hcat_table_name'))

 CREATE VIEW Customer_view as (SELECT *
 FROM load_from_Teradata
 (TABLENAME('customer_table')))
 - Create data frames
 weblog_df <- ta.data.frame(“hadoop_view”)
 customer_df <- ta.data.frame(“customer_view”)
Scaling Data Understanding

• **Traditional R**
 > Summary function to understand the statistical characteristics of the data
 > Have a large data set? Memory Error
    ```r
    cust1_df <- data.frame(customer_sample 1)
    summary (cust1_df);
    rm (cust1_df);
    ```
 > Repeat to validate sample
 > Repeat to understand transaction samples...
 > Repeat to understand customer web log samples.

• **Teradata Aster R**
 > df <- ta.data.frame ("customer")
 > ta.summary (df)

Create data frame for first customer sample file
Summary function
Free up memory for the next command

WOW! All my data in one command! It’s fast too!

Runs the summary function across all your data!
Time To Analyze

- **Traditional R**
 > Can’t build a cluster on a small sample without losing the most interesting segments
 > Partitioning data doesn’t give me a global view of purchases
 - `ca_df <- data.frame("customer_tbl", where state=CA)`
 - `kmeans (ca_df)`
 > Writing parallel kmeans will take time...

Teradata Aster R:
Complete view of your data
- `global_df <- ta.data.frame("customer tbl")`
- `ta.kmeans (global_df, k)`

Build a cluster for customers in California

Segments based on California purchase

Low cost
High value

High cost
Low value

Clusters based on global purchases

Prebuilt parallel kmeans algorithm!

Now I really understand my customer segments characteristics!
Deployment

• Traditional R
 > How do you deploy R models against large volumes of data?
 > Option 1: Get a super computer with LOTS of memory ... No budget
 > Option 2: Extract, score, write back into the database ... Too labor intensive
 > Option 3: Give to IT to recode my model ... Takes time and adds risk
 > Option 4: Use PMML & in-database scoring ... Only if IT lets me

Teradata Aster R:
 > Run any open source R package or script concurrently across all nodes or create your own parallel script with the R Parallel Constructors
 - target_segment <- data.frame(customer tbl)
 - ta.apply (target_df, FUN=myRcode)
Industrialization

Traditional R

- **Extract Samples** – Inefficient and time consuming
- **Slow Processing** – Single threaded analytics are slow
- **Data Limitations** – Bound by memory...
- **Complex programming** – Parallel programming is hard
- **Deployment challenges** – Often must recode models into SAS or SQL to deploy

Days to Weeks

Aster R

- **Self-serve** - Immediate access to data via Teradata QueryGrid
- **Fast** - Leverage Aster MPP architecture
- **Scalable** – Designed to run against all your data
- **Easy** – No parallel programming required with prebuilt functions
- **Flexible** – Run any open source function in parallel

Seconds to Hours
Teradata Aster R
High Performance Analytic Platform for R with prebuilt parallel analytic functions to process all your data and the flexibility to run any open source R package at scale

To learn more, visit: http://www.teradata.com/Teradata-Aster-R
3rd Polling question

• Polling question 3 at the end of the session.
 ▶ What would you like to learn more about? (select all that apply)
 - How to easily access and integrate data from multiple sources using R
 - How to run R analytics in parallel.
 - How to create models leveraging R, SQL and SQL-MapReduce.
 - Understand model deployment considerations for business analytics
 - Integrating R into production applications.
Thank You

Questions?

James Taylor,
Chief Executive Officer, Decision Management Solutions
james@decisionmanagementsolutions.com
www.decisionmanagementsolutions.com

Bill Franks,
Chief Analytics Officer, Teradata
bill.franks@teradata.com
www.teradata.com