

Up Your R Game

James Taylor, Decision Management Solutions Bill Franks, Teradata

Today's Speakers

James Taylor

CEO

O'REILLY®

Decision Management Solutions

Bill Franks

Teradata

Huge Data Stream

Chief Analytics Officer

WILEY

Polling question 1

- Polling question 1 in the beginning of the session.
 - > What best describes your companies use of R today?
 - No R plans in the near future
 - Exploring or experimenting with R
 - Plans to use R for analytics
 - Actively using R for model development only
 - Actively using R for model development and deployment.

Introducing R

Introducing Open Source R

- The R Project for Statistical Computing
- Interpreted language for statistical computing
 - Extensible
 - Free
 - Open source
 - Since 1997
 - 5,000 Packages

R has become significant in recent years

©2014 Decision Management Solutions

Enterprise Analytic Requirements

Enterprise analytic challenges

Clear sense of the analytic objective

Powerful data exploration

©2014 Decision Management Solutions

Scalable preparation, modeling, evaluation

Integrate all the data

Work freely with the data

Model with a wide variety of tools

Iterate rapidly to see what works

Ensembles matter

Seamless, scalable deployment

Knowing is not enough

Seamless, scalable deployment

Rapid deployment

Batch **and** real-time deployment

Scalable deployment

Challenges of Open Source R

Enterprise scale analytics and R

Clear sense of the analytic objective

Powerful data exploration

Scalable preparation, modeling, evaluation

Seamless, scalable deployment

Complex data integration

Scaling data understanding

Time to analyze

Deployment

Industrializing for scale

Complex data integration is a challenge

Scaling data understanding is a challenge

Single-threaded Parallel execution? In-memory Forced sampling Limits iteration

Time to analyze is a challenge

R users like their tools

- Lots of algorithms
- Easy to modify and fine tune

But

- Takes longer to do data analysis
- Tool limit challenges more likely
- Scaling up a challenge

Deployment is a challenge

"Knowing is not enough; we must apply. Willing is not enough; we must do."

I/3 projects have serious deployment challenges

Johann Wolfgang von Goethe

More likely to not use results
Unhappy with ease of deployment

©2014 Decision Management Solutions

Cottage industries don't scale

Industrialization is a challenge

From

- Local scripts or code
- Hand crafting
- A focus on model creation
- Individual creators

То

- Managed workflows
- Automated scale
- A focus on model management
- Broad participation and collaboration

R for Enterprise Analytics

Complex data integration

Scaling data understanding

Time to analyze

Deployment

Industrializing for scale

Polling question 2:

Polling question 2 between transition from James to Bill. What are your biggest challenges with R? (select all that apply) Complex data integration Scaling data understanding Time to analyze Deployment Industrializations Others _____

LIFTING THE LIMITATIONS OF OPEN SOURCE R

Bill Franks Chief Analytics Officer Teradata

The Case For A Discovery Platform

Data Warehouse/ **Advanced Business Intelligence Analytics** STATS f(x)П PIG.JA STATS / MAPREDUCE Integrated Data Warehouse \leftarrow (IDW) Hadoop PATH 101001001 TEXT GRAPH SQL Text Graph

The Problem

The Solution

TERADATA.

 $\ensuremath{\mathbb{C}}$ Copyright, Teradata 2014. All rights reserved.

Tackle R's Challenges With Aster R!

Complex Data Integration

Deployment

Scaling Data Understanding

Time To Analyze

Industrialization

 \odot Copyright, Teradata 2014. All rights reserved.

Teradata Aster R™

"Making open source R massively scalable & powerful"

Open source R without limitations

- Run open source R across Aster's MPP architecture for high speed
 parallel processing
- Remove memory and data limitations with in-database processing for massive scalability
- Leverage all data vs. samples for deeper insights

Unmatched ease-of-use and productivity for R users

- Use familiar R client & R language with Aster through Aster R Library
- Expose Aster Discovery Portfolio functions as R functions
- Leverage open source R with no new tools or languages to learn

Powerful analytics combining Aster and R

- Combine 100+ Aster Discovery Portfolio functions and 5,000+ R packages for powerful analytics
- Integrate R into Aster's SNAP Framework for rapid discovery
- Empower users with a single comprehensive analytic platform

Teradata Aster R Components

Aster R Parallel library

- > R functions running in full system level parallel mode
- > R interface for Aster Discovery Portfolio (MapReduce) functions

Aster R Parallel Constructor

- > Allows R users to parallelize any R code using split-apply-combine
- > R engine runs in node independent fashion across all Aster nodes

• R Engine in the SNAP Framework

- > Access to any data store, including Hadoop and Teradata
- > R script can invoke SQL, MapReduce, Graph and R engines
- > Optimal processing with SNAP's integrated optimizer and executor

R Implementation Options

Where processing takes place

© Copyright, Teradata 2014. All rights reserved.

Node Versus System Parallelism

• When R runs independently on each node/server, the onus is on the programmer to code correctly to handle node parallelism

Node Level

- 1. Find Mean per node
- 2. Return 1 answer per node or
- 3. Calculate mean of mean = 3.5 (X)

System Level

- 1. Calculate count and total for each node
- 2. Aggregate counts (11) and total (33)
- 3. Calculate mean total/count = 3 (**Correct!**)

IFRADATA

© Copyright, Teradata 2014. All rights reserved.

Aster R Library – Prebuilt Parallel Functions

- Aster R functions run in system parallel mode across all data
 - > Prebuilt parallel functions to hide the complexity of parallel programming
 - > Allows users to process all data without the need for sampling
- Familiar R language syntax

Leverages virtual data frames

> Users operate on virtual data frames that point to tables or views in the database

• Extend R capabilities with Aster Discovery Portfolio functions

> Allows R to invoke Aster MapReduce functions running in system parallel mode

Teradata Aster R Prebuilt Parallel Functions

Data Access and Movement

> Connect, query, Teradata & Hadoop access via QueryGrid, bulk load & extract, import/export data into tables, read & write csv, and more...

• Data Management

> Create data frames, refresh, and more...

Data Exploration

> Data characteristics, statistics, ranges & distributions, rank, and more...

Data Transformation and Manipulation

> Pivot, log parser, unpack/pack, split, matrices, and more...

R Operators

> [. [[, \$ -, !, +, /, *, %%, ==, !=, and more...

• Path & Time Series Analysis

> nPath, sessionization, and attribution

Statistical Analysis

> Regressions, Naïve Bayes, support vector machine, regressions, correlations, averages, histogram, Principal component analysis, and more...

Text Analysis

> Sentiment analysis, text processing, ngram, text classifier, and more..

Machine Learning

> Kmeans, basket, collaborative filter, random forest, and more...

Aster R Parallel Constructor

Allows users to run open source R scripts in Aster in parallel

• Users can run any open source R code in parallel with ta.apply()

- > Accepts a data frame as input
- > Runs an R script across a single or multiple nodes concurrently
- > Runs R script using the split-applycombine strategy
 - Similar to Map-Reduce constructs

How It Works

- > ta.apply()
 - Apply first R script to each node
 - Apply second R combiner script to the results of the first

Aster R Parallel Constructor Example

Deploying Analytics with Aster R

R interface for Aster Discovery Platform

> R users now have access to the powerful Aster Discovery Platform

Multi-faceted analytics

> A single program can call SQL, MapReduce, Graph, or R engines

Access to any data across the Teradata UDA

> Data from Teradata and Hadoop are accessible through Teradata QueryGrid

© Copyright, Teradata 2014. All rights reserved.

IFRADATA

A DAY IN THE LIFE OF AN R ANALYST

Up Your R Game!

Complex Data Integration Across Multiple Data Sources

Traditional R

- > Create data frames for big data?
 "Error: cannot allocate vector of
 size 10 GB"
- > Forced to sample data

• Aster R

> Easy Access to Hadoop and DW

- Create views
CREATE VIEW hadoop_view as (SELECT *
 FROM load_from_hcatalog
 (TABLENAME('hcat_table_name')

CREATE VIEW Customer_view as (SELECT *
 FROM load_from_Teradata
 (TABLENAME('customer_table'))

- Create data frames

weblog_df <- ta.data.frame("hadoop_view")
customer_df <- ta.data.frame("customer_view")</pre>

© Copyright, Teradata 2014. All rights reserved.

Scaling Data Understanding

• Traditional R

> Summary function to understand the statistical characteristics of the data

 $\ensuremath{\textcircled{C}}$ Copyright, Teradata 2014. All rights reserved.

FRADATA

Time To Analyze

Traditional R

- > Can't build a cluster on a small sample without losing the most interesting segments
- > Partitioning data doesn't give me a global view of purchases
 - ca df <- data.frame ("customer tbl", where state=CA)
 - Build a cluster for - kmeans (ca df) customers in California
- > Writing parallel kmeans will take time...

© Copyright, Teradata 2014. All rights reserved.

Deployment

• Traditional R

> How do you deploy R models against large volumes of data?

- > Option 1: Get a super computer with LOTS of memory ... No budget
- > Option 2: Extract, score, write back into the database ... Too labor intensive
- > Option 3: Give to IT to recode my model ... Takes time and adds risk
- > Option 4: Use PMML & in-database scoring ... Only if IT lets me

Industrialization

Traditional R

- Extract Samples Inefficient and time consuming
- Slow Processing Single threaded analytics are slow
- Data Limitations Bound by memory...
- Complex programming Parallel programming is hard
- Deployment challenges Often must recode models into SAS or SQL to deploy

Days to Weeks

- **Self-serve** Immediate access to data via Teradata QueryGrid
- **Fast** Leverage Aster MPP architecture
- Scalable Designed to run against all your data
- **Easy** No parallel programming required with prebuilt functions
- **Flexible** Run any open source function in parallel

Seconds to Hours L. ERADATA

© Copyright, Teradata 2014. All rights reserved.

Teradata Aster R

High Performance Analytic Platform for R with prebuilt parallel analytic functions to process all your data and the flexibility to run any open source R package at scale

To learn more, visit: http://www.teradata.com/Teradata-Aster-R

3rd Polling question

- Polling question 3 at the end of the session.
 - > What would you like to learn more about? (select all that apply)
 - How to easily access and integrate data from multiple sources using R
 - How to run R analytics in parallel.
 - How to create models leveraging R, SQL and SQL-MapReduce.
 - Understand model deployment considerations for business analytics
 - Integrating R into production applications.

Thank You

Questions?

James Taylor, Chief Executive Officer, Decision Management Solutions james@decisionmanagementsolutions.com www.decisionmanagementsolutions.com

Bill Franks, Chief Analytics Officer, Teradata <u>bill.franks@teradata.com</u> <u>www.teradata.com</u>

