
January 16, 2009 14:39 02257

International Journal of Bifurcation and Chaos, Vol. 18, No. 12 (2008) 3551–3609
c© World Scientific Publishing Company

IMITATION OF VISUAL ILLUSIONS
VIA OPENCV AND CNN

MAKOTO ITOH
Department of Information and Communication Engineering,

Fukuoka Institute of Technology,
Fukuoka 811-0295, Japan

LEON O. CHUA
Department of Electrical Engineering and Computer Sciences,

University of California, Berkeley,
Berkeley, CA 94720, USA

Received February 26, 2008; Revised April 20, 2008

Visual illusion is the fallacious perception of reality or some actually existing object. In this
paper, we imitate the mechanism of Ehrenstein illusion, neon color spreading illusion, water-
color illusion, Kanizsa illusion, shifted edges illusion, and hybrid image illusion using the Open
Source Computer Vision Library (OpenCV). We also imitate these illusions using Cellular Neu-
ral Networks (CNNs). These imitations suggest that some illusions are processed by high-level
brain functions. We next apply the morphological gradient operation to anomalous motion illu-
sions. The processed images are classified into two kinds of images, which correspond to the
central drift illusion and the peripheral drift illusion, respectively. It demonstrates that the con-
trast of the colors plays an important role in the anomalous motion illusion. We also imitate the
anomalous motion illusions using both OpenCV and CNN. These imitations suggest that some
visual illusions may be processed by the illusory movement of animations.

Keywords : Visual illusion; OpenCV; CNN; programming function; template; equilibrium state;
nonlinear operator; Hough transform; morphological gradient; thresholding; edge detection;
watershed segmentation; optical flow; animation; Ehrenstein illusion; neon color spreading illu-
sion; watercolor illusion; Kanizsa illusion; Fraser illusion; shifted edges illusion; hybrid image
illusion; central drift illusion; peripheral drift illusion.

1. Introduction

Human visual systems see something that is not
present, or incorrectly see what is present. The
information gathered by the eye is processed by
the brain to give a percept that does not tally
with a physical measurement of the stimulus
source. Visual illusion1 is defined as the falla-
cious perception of reality or some actually exist-
ing object. Illusory colors [Werner et al., 2007]
are defined as the colors that the brain is tricked

into seeing. The study of illusory colors demon-
strates that color processing in the brain occurs
hand in hand with processing of other properties;
such as, shape and boundary. Recently, great atten-
tion has been drawn to anomalous motion illusion
[Kitaoka, 2007], which is characterized by illusory
motion in a stationary image. In some anoma-
lous motion illusions, color enhances the illusion,
namely, it gives a much stronger illusion. Research
on visual illusion can provide fundamental insights

1For more details of visual illusions, see “optical illusion,” Wikipedia: The Free Encyclopedia.

3551

LAB-PC20
Resaltado

January 16, 2009 14:39 02257

3552 M. Itoh & L. O. Chua

into the general brain mechanisms of perception and
cognition.

Cellular Neural Network (CNN) [Chua, 1998;
Chua & Roska, 2002] is a dynamic nonlinear system
defined by coupling only identical simple dynamical
systems, called cells, located within a prescribed
sphere of influence, such as nearest neighbors.
Because of its simplicity, and ease for chip (hard-
ware) implementation, CNN has found numerous
applications in Image and Video Signal Processing,
Robotic and Biological Visions, and Higher Brain
Functions. It is a well-known fact that for many
brainlike computations, the CNN universal chip
[Chua, 1998; Chua & Roska, 2002] is far superior
to any equivalent DSP implementation by at least
three orders of magnitude in either speed, power
or area. The CNN has the ability to mimic high
level brain functions. Many well-known visual illu-
sions have been simulated by CNN image process-
ing [Chua, 1998; Chua & Roska, 2002; Itoh & Chua,
2007].

Open Source Computer Vision Library
(OpenCV)2 is a library of programming functions
originally developed by Intel and optimized for their
processors. This library is mainly aimed at real-time
image processing (computer vision), and includes a
collection of algorithms and sample code for various
computer vision problems. OpenCV’s application
areas include Human-Computer Interaction; Object
Identification, Segmentation and Recognition; Face
Recognition; Gesture Recognition; Motion Tracking,
Ego Motion, Motion Understanding; Structure from
Motion; and Mobile Robotics. The OpenCV is not
designed as a neural network, but it has the Machine
Learning Library, which includes feedforward arti-
ficial neural networks, more particularly, multilayer
perceptrons.

The difference between OpenCV and CNNs is
described as follows: The image processing of CNNs
is dynamic, however, that of the OpenCV is static,
since the CNN is defined by a system of differen-
tial equations, and the OpenCV is usually defined
by nonlinear or linear functions. If we integrate
OpenCV into CNN image processing, we can use
both dynamic and static properties.

In this paper, we imitate the mechanism of
Ehrenstein illusion, neon color spreading illusion,

watercolor illusion, Kanizsa illusion, shifted edges
illusion [Kitaoka, 2007], and hybrid image illusion
[Oliva et al., 2006] using OpenCV programming
functions. We also imitate them by using CNN tem-
plates with the help of OpenCV, thereby allowing
us to simulate many visual illusions by equilibrium
states of CNNs. Our imitations via OpenCV and
CNN suggest that some color illusions are processed
by high-level brain functions. We next apply mor-
phological gradient operation to anomalous motion
illusions. The processed output images are classi-
fied into two kinds of images. One is a pale or
a single colored image and the other is a bright
colored image. They seem to emulate the type of
illusion which occurs in the central vision (central
drift illusion [Kitaoka, 2007]), and in the peripheral
vision (peripheral drift illusion [Kitaoka, 2007]),
respectively. This suggests that color contrast plays
an important role in anomalous motion illusion.
Finally, we imitate anomalous motion illusions, and
glare effect illusion, by using the OpenCV’s optical
flow and the shift motion CNN templates. These
imitations suggest that some visual illusions may be
processed by the illusory movement of animations.

2. OpenCV Functions

OpenCV is a collection of programming functions
that implement some popular image processing and
computer vision algorithms developed by Intel and
optimized for their processors. We introduce the
basic definition of Hough Transform, morpholog-
ical gradient, thresholding, Canny edge detector,
and optical flow, in the OpenCV reference manual.
These functions are basically nonlinear operators,
and they are used to imitate visual illusions.

2.1. Hough transform

Hough Transform3 is a popular method for extract-
ing geometric primitives from raster images.4 The
simplest version of the algorithm just detects lines,
but it is easily generalized to find more complex
features. To illustrate the idea, let us start with
a straight line (Fig. 1). In the image space, the
straight line can be described as y = mx + n and is
plotted for each pair of values (x, y). However, the
characteristics of that straight line is not x or y,

2Open Source Computer Vision Library: http://www.intel.com/technology/computing/opencv/
3For more information, see “Hough transform,” in the OpenCV Reference Manual or Wikipedia.
4A raster image, also called a bitmap, is a way to represent digital images. The raster image takes a wide variety of formats,
including the familiar gif, jpg, and bmp.

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3553

Fig. 1. Hough transform. The points a, b and c are transformed into the blue, green and red lines on the (r, θ)-plane,
respectively. The black point where the lines intersect gives a distance and angle.

but its slope m and intercept n. Based on that fact,
the straight line y = mx + n can be represented as
a point (n,m) in the parameter space (n versus m
graph.)

Using slope-intercept parameters could make
application complicated since both parameters are
unbounded: As lines get more and more vertical,
the magnitudes of m and n grow toward infinity.
For computational purposes, it is better to param-
eterize the lines in the Hough transform with two
other parameters, commonly called r and θ. The
parameter r represents the distance between the
line and the origin, while θ is the angle of the vec-
tor from the origin to this closest point. Using this
parameterization, the equation of the line can be
written as:

y =
(
−cos θ

sin θ

)
x +

(r

sin θ

)
, (1)

which can be recast into

r = x · cos θ + y · sin θ. (2)

It is therefore possible to associate to each line of
an image, a couple of real numbers (r, θ) which are
unique if θ ∈ [0, π] and r ∈ R, or if θ ∈ [0, 2π] and
r > 0. The (r, θ)-plane is sometimes referred to as
Hough space.

It is well known that an infinite number of lines
can go through a single point of the plane. If that
point has coordinates (x0, y0) in the image plane, all
lines that go through it obey the following equation:

r(θ) = x0 · cos θ + y0 · sin θ. (3)

This corresponds to a sinusoidal curve in the (r, θ)
plane, which is unique to that point. If the curves
corresponding to two points are superimposed, the

location (in the Hough space) where they cross cor-
responds to lines (in the original image space) that
pass through both points. More generally, a set of
points that form a straight line will produce sinu-
soids which cross at the parameters for that line.
Thus, the problem of detecting colinear points can
be converted to the problem of finding concurrent
curves (Fig. 1).

Consider next the integration kernel

h(x, y, r, θ) = I(x, y)δ[x · cos θ + y · sin θ − r], (4)

where I is the image magnitude in pattern space
and δ is the Dirac delta function that is normally
integrated into a sinusoidal string of accumulator
bins. Typically, I is binary valued taking on unit
value at points on image lines. An accumulator bin
thus receives a unit count where singularities appear
in h. The Hough transformation is nonlinear, since
the integration kernel (4) can be written as

h(x, y, r, θ) = I(x, y)δ
[
(x2 + y2)

1
2

×cos
(
θ − tan−1

(y

x

))
− r

]
, (5)

which shows the nonlinear affect of (x, y) on (r, θ).
Practically, the Hough transform algorithm

uses an array called accumulator to detect the exis-
tence of a line. Every pixel in an image may belong
to many lines described by a set of parameters r and
θ. In other words, the accumulator is defined which
is an integer array A(r, θ) containing only zeroes
initially. For each nonzero pixel in the image all
accumulator elements corresponding to lines that
contain the pixel are incremented by 1. Then a
threshold is applied to distinguish lines and noise
features, that is, select all pairs (r, θ) for which

January 16, 2009 14:39 02257

3554 M. Itoh & L. O. Chua

Fig. 2. Hough transform. Using the probabilistic Hough transform, many straight lines are detected from the input image,
and are marked in red (right). This input image (left) is included in the OpenCV reference manual.

A(r, θ) is greater than the threshold value. All such
pairs characterize detected lines. In the probabilis-
tic (random) Hough transforms, not all input pixels
are mapped to the accumulator (selecting a point
randomly from the image space), and thus the run-
time is decreased (Fig. 2).

Although the version of the transform described
above applies only to finding straight lines, a similar
transform can be used for finding any shape which
can be represented by a set of parameters. A circle,
for instance, can be transformed into a set of three
parameters, representing its center and radius, so
that the Hough space becomes three dimensional.
Arbitrary ellipses and curves can also be found this
way, as can any shape easily expressed as a set of
parameters. For more complicated shapes, the gen-
eralized Hough transform is used, which allows a
feature to vote for a particular position, orientation
and/or scaling of the shape using a predefined look-
up table.

2.2. Morphological gradient

Mathematical morphology5 is a set-theory method
of image analysis. Mathematical morphology exam-
ines the geometrical structure of an image by
probing it with small patterns, called “structuring
elements”, of varying size and shape, just the way
a blind man explores the world with his fingers or
a stick. This procedure results in nonlinear image
operators which are well-suited to exploring geo-
metrical and topological structures. Morphological
operators can be used for noise filtering, merging or

splitting image regions, as well as for region bound-
ary detection.

Two basic morphological operations are ero-
sion, or thinning, and dilation, or thickening (Figs. 3
and 4). All operations involve an image A, called the
object of interest, and a kernel element B, called the
structuring element. The element B is most often
a square or a circle, but could be any shape. Just
like in convolution, B is a kernel or template with
an anchor point.

If Bz is the spatial translation of B along the
boundary of an image, then the dilation of object
A by the structuring element B is defined by

A ⊕ B = {z : Bz ∩ A �= 0}. (6)

Equation (6) implies that every pixel is in the set
A⊕B, if the intersection is not null. That is, a pixel
under the anchor point of B is marked “on”, if at
least one pixel of B is inside of A. The basic effect
of dilation on binary images is to enlarge the areas
of foreground pixels at their borders. The areas of
foreground pixels thus grow in size, while the back-
ground holes within them shrink. Grayscale dila-
tion brightens small dark areas, and very small dark
holes might be totally removed.

Erosion of object A by structuring element B
is defined by

A � B = {z : Bz ⊆ A}. (7)

That is, a pixel under the anchor of B is marked
“on”, if B is entirely within A. The basic effect
of erosion on binary images is to remove any

5For more information, see “morphology,” in the OpenCV Reference Manual or “mathematical morphology,” in Wikipedia.

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3555

Fig. 3. Morphology operations. The symbols A and B are the object image and the kernel element, respectively. The dilation,
erosion, and gradient images are colored in green, yellow and pink, respectively.

Fig. 4. Dilation and erosion of grayscale image. The symbols A and B are the object image and the flat structuring element,
respectively. The dilation and erosion of a gray level image A by a flat structuring element B are shown in red lines.

foreground pixel that is not completely surrounded
by other foreground pixels.

Erosion and dilation in gray levels can be done
using a flat structuring element B as shown in
Fig. 4. The flat structuring element B has an anchor
slightly to the right of the center as shown by the
dark mark on B. The dilation and erosion of a gray
level image A by a flat structuring element B are
shown in red lines. Grayscale erosion darkens small
bright areas, and very small bright areas like noise
spikes or small spurs might be totally removed.

A morphological gradient of object A by struc-
turing element B is defined by

grad(A) =
(A ⊕ B) − (A � B)

2
. (8)

The areas with the steepest bright-to-dark or dark-
to-bright transitions are highlighted using this oper-
ation (Fig. 5).

2.3. Thresholding

Thresholding6 is a nonlinear operation which con-
verts a gray scale image into a binary image. It
is also the simplest method of image segmenta-
tion (Fig. 6). Individual pixels in a grayscale image
are marked as “object” pixels if their value is
greater than some threshold value (assuming an
object to be brighter than the background) and as
“background” pixels otherwise. Typically, an object
pixel is given a value of “1” while a background

6For more information, see “thresholding,” in the OpenCV Reference Manual or Wikipedia.

January 16, 2009 14:39 02257

3556 M. Itoh & L. O. Chua

Fig. 5. Morphology operations. Input, dilation, erosion, and gradient images are illustrated from left to right. The kernel
element B is a 3 × 3 square.

Fig. 6. Thresholding. The input image (left) is converted to the black-and-white thresholding image (center) and adaptive
thresholding image (right).

pixel is given a value of “0”. The key parame-
ter in thresholding is obviously the choice of the
threshold. Several different methods for choosing
a threshold exist. The simplest method would be
to choose the mean or median value, the ratio-
nale being that if the object pixels are brighter
than the background, they should also be brighter
than the average. Thresholding functions are used
mainly for two purposes: masking out some pixels
that do not belong to a certain range, for example,

to extract blobs of certain brightness or color from
the image; converting grayscale image to bilevel or
black-and-white image. Usually, the resultant image
is used as a mask or as a source for extracting
higher-level topological information, e.g. contours,
skeletons, lines, etc.

Adaptive thresholding changes the threshold
dynamically over the image, whereas the conven-
tional thresholding operator uses a global thresh-
old for all pixels. The algorithm will consider each

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3557

Fig. 7. Canny edge detector. The input image (left) is converted to a black and white image with edges (right).

pixel one at a time, calculate the mean of the local
neighborhood and thresholds the current pixel to
white if the difference between the calculated mean
and the current pixel value is lower than the mean
offset.

2.4. Canny edge detector

Edges are the boundaries separating regions with
different brightness or color. Canny edge detector
is a nonlinear operator which converts a grayscale
image into a binary image where non-zero pixels
mark detected edges. The Canny edge detection
algorithm was developed by John F. Canny in 1986
[Canny, 1986] and uses a multistage algorithm to
detect a wide range of edges in images. Canny edge
detector7 in the OpenCV takes grayscale image on
input and returns bilevel image where white pixels
mark detected edges (Fig. 7). We next show the
outline of a simple four-stage Canny edge detector
algorithm.

• Step 1. Image smoothing
The image data is smoothed by a Gaussian filter.

• Step 2. Differentiation
The smoothed image is differentiated with re-
spect to the directions x and y. From the com-
puted gradient values x and y, the magnitude and
the angle of the gradient can be calculated using
the hypotenuse and arctangent functions.

• Step 3. Nonmaximum suppression
The edges can be located at the points of local
maximum gradient magnitude. After the gradient
has been calculated at each point of the image,
a search is then carried out to determine if the
gradient magnitude assumes a local maximum in
the gradient direction. This will give a thin line
in the output image.

• Step 4. Edge thresholding
Canny edge detector uses the so-called “hystere-
sis” thresholding, which requires two thresholds:
upper and lower edge values. Considering a line
segment, if a value lies above the upper thresh-
old limit it is immediately accepted. If the value
lies below the low threshold it is immediately
rejected. Points which lie between the two lim-
its are accepted if they are connected to pix-
els which exhibit strong response. The likelihood

7For more information, see “Canny edge detector,” in the OpenCV Reference Manual or Wikipedia.

January 16, 2009 14:39 02257

3558 M. Itoh & L. O. Chua

of streaking is reduced drastically since line seg-
ment points must fluctuate above the upper limit
and below the lower limit for streaking to occur
[Canny, 1986].

2.5. Watershed segmentation

Watershed segmentation8 is a way of automatically
separating or cutting apart particles that touch
(Fig. 8). This method can also be explained by a
metaphor based on the behavior of water in a land-
scape. When it rains, drops of water falling in differ-
ent regions will follow the landscape downhill. The
water will end up at the bottom of valleys. For each
valley there will be a region from which all water
drains into it. In other words, each valley is associ-
ated with a catchment basin, and each point in the
landscape belongs to exactly one unique basin.

The Watershed function in the OpenCV imple-
ments one of the variants of watershed, non-
parametric marker-based segmentation algorithm,

described in [Meyer, 1992]. Before passing the image
to the function, we have to outline roughly the
desired regions in the image markers with posi-
tive indices, i.e. every region is represented as one
or more connected components with pixel values
1, 2, 3, etc. Those components will be “seeds” of the
future image regions. All other pixels in markers,
whose relation to the outlined regions is not known
and is defined by an algorithm should be set to 0’s.
On the output of the function, each pixel in markers
is set to one of the values of the “seed” components,
or to −1 at boundaries between the regions. Hence,
the watershed segmentation is a nonlinear operator
which converts a grayscale or color image into an
image whose pixel values are −1 or 1, 2, 3, etc.

2.6. Optical flow

Optical flow9 is a concept which approximates the
motion of objects within a visual representation
(Fig. 9). Estimating the optical flow is useful in

Fig. 8. Watershed (marker-based) segmentation. Observe that three regions are separated by two white boundaries. Input
image, marked image (by red circles), and watershed segmentation image are illustrated from left to right. The input image
is included in the OpenCV reference manual.

Fig. 9. Optical flow. The motion of image is marked by red lines (right). It is calculated for two input images (left and
center), which are included in the OpenCV’s web reference manual.

8For more information, see “watershed,” in the OpenCV sample program or Wikipedia.
9For more information, see “optical flow,” in the OpenCV Reference Manual or Wikipedia.

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3559

pattern recognition, computer vision, and other
image processing applications. It is closely related
to motion estimation and motion compensation.
Optical flow is defined as an apparent motion of
image brightness. Let I(x, y, t) be the image bright-
ness that changes in time to provide an image
sequence. Two main assumptions can be made:

1. Brightness I(x, y, t) smoothly depends on coor-
dinates x, y in greater part of the image.

2. Brightness of every point of a moving or static
object does not change in time.

Let some object in an image, or some point of an
object, move and after time dt the object displace-
ment is (dx, dy). Using Taylor series for brightness
I(x, y, t) gives the following:

I(x + dx, y + dy, t + dt)

= I(x, y, t) +
∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt + H.O.T .,

(9)

where the symbol H.O.T . indicates higher order
terms. Then, according to Assumption 2, we have

I(x + dx, y + dy, t + dt) = I(x, y, t), (10)

and

∂I

∂x
dx +

∂I

∂y
dy +

∂I

∂t
dt + H.O.T . = 0. (11)

Define the components of optical flow field in x and
y coordinates by

dx

dt
= u,

dy

dt
= v, (12)

respectively, which means the speeds of the object
moving in the x and y directions. In the limit that
dt tends to zero, we obtain

−∂I

∂t
=

∂I

∂x
u +

∂I

∂y
v, (13)

which is usually called optical flow constraint equa-
tion. In this equation, It

�
= ∂I/∂t measures how

fast the intensity is changing with time, while
Ix

�
= ∂I/∂x and Iy

�
= ∂I/∂y are the spatial rates

of change of intensity, i.e. how rapidly intensity
changes on going across the picture, so all three
of these quantities can be estimated for each pixel
by considering the images. Assuming that the flow
(u, v) is constant in a small window of size m × m

with m > 1, which is centered at (x, y) and num-
bering the pixels as 1, . . . , n, the following set of
equations can be found:

Ix1u + Iy1v = −It1

Ix2u + Iy2v = −It2

...
Ixnu + Iynv = −Itn

(14)

or equivalently

Ix1 Iy1

Ix2 Iy2

...
...

Ixn Iyn

[
u

v

]
=

−It1

−It2

...
−Itn

 (15)

To solve the over-determined system of equa-
tions, the least squares method is used in the
Lucas–Kanade optical flow estimation. Multiplying
Eq. (15) with the matrix[

Ix1 Ix2 · · · Ixn

Iy1 Iy2 · · · Iyn

]
(16)

we obtain

[
Ix1 Ix2 · · · Ixn

Iy1 Iy2 · · · Iyn

]

Ix1 Iy1

Ix2 Iy2

...
...

Ixn Iyn

[
u

v

]

=
[
Ix1 Ix2 · · · Ixn

Iy1 Iy2 · · · Iyn

]

−It1

−It2

...
−Itn

 (17)

Solving this equation for (u, v), we get

[
u

v

]
=

n∑
i=1

I2
xi

n∑
i=1

IxiIyi

n∑
i=1

IxiIyi

n∑
i=1

I2
yi

−1

−
n∑

i=1

IxiIti

−
n∑

i=1

IyiIti

.

(18)

This means that the optical flow can be found by
calculating the derivatives of the image in all three
dimensions, namely Ixi, Iyi, Iti. Two other kinds
of optical flow functions are given in the OpenCV
library, which calculate the optical flow for two
images (for more details, see the OpenCV Refer-
ence Manual).

January 16, 2009 14:39 02257

3560 M. Itoh & L. O. Chua

3. CNN Templates

Cellular Neural Network [Chua, 1998; Chua &
Roska, 2002] is a dynamic nonlinear system defined
by coupling only identical simple dynamical sys-
tems, called cells, located within a prescribed sphere
of influence, such as nearest neighbors. The dynam-
ics of a standard cellular neural network with a
neighborhood of radius r are governed by a system
of n = MN differential equations

dxij

dt
= −xij +

∑
k,l∈Nij

(ak,lykl + bk,lukl) + zij ,

(i, j) ∈ {1, . . . ,M} × {1, . . . , N}
(19)

where Nij denotes the r-neighborhood of cell Cij ,
and akl, bkl, and zij denote the feedback, control,
and threshold template parameters, respectively.
The matrices A = [akl] and B = [bkl] are referred
to as the feedback template A and the feedforward
(input) template B, respectively. The output yij

and the state xij of each cell are usually related
via the piecewise-linear saturation function

yij = f(xij) =
1
2
(|xij + 1| − |xij − 1|). (20)

If we restrict the neighborhood radius of every cell
to 1 and assume that zij is the same for the whole
network, the template {A,B, z} is fully specified by
19 parameters, which are the elements of two 3× 3
matrices A and B, namely

A =

a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1

a1,−1 a1,0 a1,1

,

(21)

B =

b−1,−1 b−1,0 b−1,1

b0,−1 b0,0 b0,1

b1,−1 b1,0 b1,1

,

and a real number z. The following palette is usually
applied to the output yij:

output yij color

yij = 1 ⇒ black
−1 < yij < 1 ⇒ gray scale

yij = −1 ⇒ white

(22)

which is the reverse of the OpenCV’s palette. In
color image processing, the same template and
palette are usually applied to each color component.

We next show some typical CNNs which are
similar to OpenCV programming functions, and
they can be applied to the imitation of visual
illusions.10

3.1. Morphological CNNs

Dilation CNN [Chua, 1998; Chua & Roska, 2002;
Itoh & Chua, 2003] grows a layer of pixels around
objects in a binary input image in a way determined
by a structuring element coded by the B template
(Fig. 10). A dilation CNN template with 3×3 struc-
turing element is given by

A =
0 0 0
0 2 0
0 0 0

, B =
1 1 1
1 1 1
1 1 1

, z = 9 , (23)

where the initial condition is given by xij(0) = uij .
The dilation CNN simply adds onto the input image
one layer of black pixels on the perimeter of all black
objects.

Erosion CNN [Chua, 1998; Chua & Roska,
2002; Itoh & Chua, 2003] peels off all boundary
pixels of a binary input image (Fig. 10). Pixels are
considered to belong to the object boundary if the
structuring element, coded by a B template, does
not fit completely within the object. An erosion
CNN template with a 3 × 3 structuring element is
given by

A=
0 0 0
0 2 0
0 0 0

, B=
1 1 1
1 1 1
1 1 1

, z = −9 , (24)

where the initial condition is given by xij(0) = uij .
The erosion CNN simply peels off from the input
image one layer of black pixels on the perimeter of
all black objects.

Gradient CNN highlights the areas with the
steepest white-to-black or black-to-white transi-
tions, namely, extracts edges (Fig. 10). A gradient
CNN template is given by

A=
0 0 0
0 1 0
0 0 0

, B=
0 0 0
0 −1 0
0 0 0

, z= zij , (25)

which has a nonuniform threshold zij . The input
and threshold images of the gradient CNN are the
output images of the erosion and dilation CNNs,
respectively.

10All numerical simulations of the CNNs are performed by using the simulator “CELL” (Circuit Lab. Department of Electric
Engineering, University of Rome “Tor Vergata”).

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3561

Fig. 10. Morphology CNNs. Input (top), dilation (bottom left), erosion (bottom center), and gradient images (bottom right)
are illustrated. The structuring element B is given by a 3 × 3 pixel square.

3.2. Thresholding CNN

Thresholding CNN converts a grayscale input image
into a binary image (Fig. 11). A thresholding CNN
template is given by

A =
0 0 0
0 2 0
0 0 0

, B =
0 0 0
0 1 0
0 0 0

, z = −z∗ , (26)

where the initial condition is given by xij = 0. Each
pixel in an input image is converted into black (resp.
white) if it has a gray scale intensity greater (resp.
less) than a prescribed threshold z∗. This template
is similar to that of the threshold CNN [Chua, 1998;
Chua & Roska, 2002].

3.3. Edge detection CNN

Edge detection CNN [Chua, 1998; Chua & Roska,
2002; Itoh & Chua, 2003] extracts edges of objects
in a binary input image where each black pixel with
at least one white nearest neighbor is defined to
be an edge cell (Fig. 12). An edge detection CNN

template is given by

A=
0 0 0
0 2 0
0 0 0

, B=
−1 −1 −1
−1 8 −1
−1 −1 −1

, z= −2 , (27)

where the initial condition is given by xij(0) = uij .
The edge detection CNN can also extract edges
from a grayscale image by adjusting the threshold
parameter z (Fig. 13).

3.4. Watershed segmentation CNN

Watershed segmentation CNN fills the marked area
of a binary input image (Fig. 14). A watershed seg-
mentation template is given by

A =
0 1 0
1 4 1
0 1 0

, B =
0 0 0
0 −6 0
0 0 0

, z = 0 . (28)

A small marked patch of black pixels on the initial
state of xij spreads and ends up at the boundary.
This template is equivalent to that of the face-vase
illusion CNN [Chua, 1998; Chua & Roska, 2002;
Itoh & Chua, 2003].

January 16, 2009 14:39 02257

3562 M. Itoh & L. O. Chua

Fig. 11. Thresholding CNN. The woman’s grayscale image (left) is converted to the black-and-white threshold image (right).
The threshold z∗ is set to 0.1.

Fig. 12. Edge detection CNN. The threshold image (left) is converted to the edge image (right).

3.5. Shift translation CNN

Shift translation CNN moves a grayscale or color
image by one-pixel to one of eight possible direc-
tions (north, northeast, east, southeast, south,
southwest, west, northwest) (Fig. 15). For example,
an east shift translation CNN template is given by

A =
0 0 0
0 0 0
0 0 0

, B =
0 0 0
1 0 0
0 0 0

, z = 0 , (29)

where the initial state of xij are set to zero or
an input image, and an input image is given by a
grayscale or color image. By multiple operations of
shift motion CNN, an input image can be moved to

any direction and by any pixels. This template is
similar to that of the translation CNN [Chua, 1998;
Chua & Roska, 2002].

3.6. Shift motion CNN

Shift motion CNN moves a color image to one
of eight possible directions (north, northeast, east,
southeast, south, southwest, west, northwest) con-
tinuously if each color component consists of a
binary image (Fig. 16). For example, an east shift
motion CNN template is given by

A =
0 0 0
1 1 0
0 0 0

, B =
0 0 0
0 0 0
0 0 0

, z = 0 , (30)

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3563

Fig. 13. Edge detection CNN. The woman’s grayscale image (left) is converted to the edge image (right). The threshold z∗
is set to −0.8.

Fig. 14. Watershed segmentation CNN. The marked contiguous area of a binary input image is filled. Input image, marked
image, and watershed segmentation image are illustrated from left to right.

where the initial state of xij is given by an input
color image. By this template, an input image can
be moved to right (east) continuously.

3.7. Stop motion animation via CNN

Stop motion (or frame-by-frame) animation is an
animation technique which makes a physically
manipulated object appear to move. If an image

is displayed on the computer screen then quickly
replaced by a new image that is similar to the pre-
vious image, but shifted slightly, then an illusory
movement is created. Thus, the shift translation
CNN can generate stop motion animations, since
the given image converged to the shifted image.
Furthermore, the shift translation and shift motion
CNNs suggest the possibility of high speed CNN
animation, which creates moving images via the

January 16, 2009 14:39 02257

3564 M. Itoh & L. O. Chua

Fig. 15. Shift translation CNN. The milkdrop image (left) is moved to the southwest direction (right).

use of CNN templates and CNN universal chips.
They also suggest the possibility of video data
compression by sending only a few parameters of
CNN templates in place of huge video images.

3.8. Marker CNN

Marker CNN adds white (or black) markers to a
color input image (Fig. 17). For example, white
marker templates are given by

A =
0 0 0
0 1 0
0 0 0

, B =
0 0 0
0 −1 0
0 0 0

, z = −1 , (31)

or

A =
0 0 0
0 1 0
0 0 0

, B =
0 0 0
0 1 0
0 0 0

, z = −1 , (32)

where the marker image is given by a binary input
image uij and the initial state of xij is given by
a color image. Equations (31) (resp. (32)) add
white markers using the black objects (resp. white
objects) of a binary input image. Red, green and
blue marker CNNs are obtained by applying the
marker CNN into red, green and blue color compo-
nents, respectively.

3.9. Negative image CNN

A positive image is a normal image. A negative
image is a tonal inversion of a positive image, in
which light areas appear dark and vice versa. A
negative color image is additionally color reversed,

with red areas appearing cyan, green areas appear-
ing magenta, and blue areas appearing yellow.

Negative image CNN transforms a positive
image into a negative image (Fig. 18), whose
template is given by

A =
0 0 0
0 0 0
0 0 0

, B =
0 0 0
0 −1 0
0 0 0

, z = 0 .

(33)

Since the CNN uses the reverse palette, we need the
negative image CNN to imitate visual illusions.

3.10. Painting CNN

Painting CNN colors black objects (resp. white
objects) in a binary input image with a specified
color (resp. black color) (Fig. 19). The CNN tem-
plates of red, green and blue color components are
given by

Ar =
0 0 0
0 0 0
0 0 0

, Br =
0 0 0
0 −1 0
0 0 0

, zr = 1 + r , (34)

Ag =
0 0 0
0 0 0
0 0 0

, Bg =
0 0 0
0 −1 0
0 0 0

, zg = 1 + g , (35)

and

Ab =
0 0 0
0 0 0
0 0 0

, Bb =
0 0 0
0 −1 0
0 0 0

, zb = 1 + b , (36)

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3565

Fig. 16. Shift motion CNN with a periodic boundary. Five cars move to right (t = 0, 130, 520).

January 16, 2009 14:39 02257

3566 M. Itoh & L. O. Chua

Fig. 17. Marker CNN. White circles are added to the woman’s input image. Input images, initial states, and output images
of these CNNs are illustrated from left to right (top). Red, green and blue circles are added to the woman’s input image
(bottom).

Fig. 18. Negative image CNN. The positive image (left) of parrots is transformed into the negative image (right).

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3567

Fig. 19. Painting CNN. Black objects in a binary image (top) and a grayscale image (bottom) are painted with yellow.

respectively, where −1 ≤ r, g, b ≤ 1 and Red, Green,
and Blue color values (RGB) are given by

(R, G,B)

=
(
−255

2
(r − 1), −255

2
(g − 1), −255

2
(b − 1)

)
,

(37)

or equivalently

(r, g, b) =
(

255 − 2R
255

,
255 − 2G

255
,

255 − 2B
255

)
.

(38)

4. Visual Illusion

Visual (optical) illusion is characterized by visually
perceived images that are deceptive or misleading.
The information gathered by the eye is processed
by the brain to give a percept that does not tally
with a physical measurement of the stimulus source.

We introduce some visual illusions using the ref-
erences: “optical illusion” in Wikipedia, [Kitaoka,
2007], and [Oliva et al., 2006].

4.1. Ehrenstein illusion

Ehrenstein illusion is a visual illusion studied by the
German psychologist Walter Ehrenstein. A series
of radial lines whose inward-pointing end create an
illusory circle that appears to be brighter than the
background (Fig. 20). A similar effect is obtained in
the Kanizsa triangle illusion.

4.2. Neon color spreading illusion

Neon Color Spreading illusion is characterized by
neonlike color spreading into a homogeneous back-
ground. If each inner endpoint of the black lines
is extended with a neon colored line, a bright illu-
sory disk is perceived. Any gap destroys the illusion
(Fig. 21).

January 16, 2009 14:39 02257

3568 M. Itoh & L. O. Chua

Fig. 20. Ehrenstein illusion. The ends of the dark segments produce the illusion of a circle. The apparent figure has the same
color as the background, but appears brighter. Adding a circle (right) destroys the illusion of a bright central disk.

Fig. 21. Neon color spreading. If the inner endpoints of the black lines are continued with neon colored lines, a bright illusory
disk is perceived. Any gap destroys the illusion.

4.3. Kanizsa illusion

Kanizsa illusion is a visual illusion first described by
the Italian psychologist Gaetano Kanizsa in 1955.
An equilateral triangle is perceived, but in fact none
is drawn. This effect is known as a subjective or illu-
sory contour. Also, the nonexistent triangle appears
to be brighter than the surrounding area, but in
fact it has the same brightness as the background
(Fig. 22).

4.4. Watercolor illusion

Watercolor illusion is a phenomenon that can be
observed when a figure is defined by a contour
consisting of a pair of parallel lines on white
background — a dark line, and a lighter colored

line on the inside. The interior of the figure then
appears slightly tinted with the hue of the lighter
colored line (Fig. 23).

4.5. Fraser illusion and shifted
edges illusion

Fraser illusion is a visual illusion named after the
British psychologist James Fraser, who first stud-
ied the illusion in 1908. When slightly tilted line
segments are aligned horizontally, the whole array
appears to tilt toward the tilt of the line elements
(Fig. 24).

Shifted edges illusion [Kitaoka, 2007] is a phe-
nomenon where each row appears to tilt even

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3569

Fig. 22. Kanizsa illusion. In the left figure a white equilateral triangle is perceived, but in fact none is drawn (left). This effect
is known as a subjective or illusory contour. Also, the nonexistent white triangle appears to be brighter than the surrounding
area, but in fact it has the same brightness as the background. In the case of Varin’s figure (right), a blue square appears in
front of four black circles.

Fig. 23. Watercolor illusion [Pinna & Grossberg, 2005]. Purple undulated contours flanked by orange edges are perceived as
undefined irregular curved shapes with a plain volumetric effect evenly colored by a light veil of orange tint spreading from
the orange edges (left). When purple and orange lines are reversed, stars with a different number of points are now perceived
(right).

though the shifted rectangles are horizontally
aligned (Fig. 24).11

4.6. Anomalous motion illusion

Anomalous motion illusion [Kitaoka, 2007] is an
illusion in which if you look around the static image
it will appear to move, or part of a figure will
appear to move in a direction different from the

rest (Fig. 25).12 These motion illusions all work dif-
ferently for different people, and it often works best
if the image is larger, and if you let your eye jump
from one position to the next.

4.7. Glare effect illusion

Glare effect illusion is an illusion in which a
region appears self-luminous when it is surrounded

11See also Kitaoka’s illusion gallery: http://www.psy.ritsumei.ac.jp/˜akitaoka/
12See also Kitaoka’s illusion gallery: http://www.psy.ritsumei.ac.jp/˜akitaoka/

January 16, 2009 14:39 02257

3570 M. Itoh & L. O. Chua

Fig. 24. Fraser illusion (left) and shifted edges illusion (right) [Kitaoka, 2007]. When slightly tilted line segments are aligned
horizontally, the whole array appears to tilt toward the tilt of the line elements (left). Each row is aligned horizontally but
appears to tilt counterclockwise or clockwise alternately (right).

Fig. 25. Anomalous Motion Illusion [Kitaoka, 2007]. The left disk appears to rotate counterclockwise while the right one
clockwise. Anomalous motion illusions might make sensitive observers dizzy or sick. If you feel dizzy, you should leave this
page immediately.

Fig. 26. Glare effect illusion [Kitaoka, 2007]. The white targets surrounded by luminance gradients appear self-luminous. The
flower petals (left) and the ring of lipsticks (right) appear to glare.

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3571

Fig. 27. Hybrid image illusion [Oliva et al., 2006]. Hybrid images change interpretation as a function of viewing distance.
They combine the low-spatial frequencies of one picture with the high spatial frequencies of another picture producing an
image with an interpretation that changes with viewing distance. An angry man or a thoughtful woman (left). On a close-up
view of the left figure, we can see a stern woman, but if we step away from the picture, we will see the face of an angry man.
We can switch the percept by watching the picture from a few meters. The house of the right figure is under construction.
When we view the image at a short distance, the house is seen under construction, but if we step away from the picture, we
will see its final state.

by gradients decreasing in luminance with dis-
tance from the region. For example, a white tar-
get surrounded by luminance gradients appears
self-luminous, and the image appears to expand
[Kitaoka, 2007] (Fig. 26).

4.8. Hybrid image illusion

Hybrid images [Oliva et al., 2006] change interpre-
tation as a function of viewing distance (Fig. 27).13

Hybrids combine the low-spatial frequencies of one
picture with the high spatial frequencies of another
picture producing an image with an interpretation
that changes with viewing distance. Hybrid images
are based on the multiscale processing of images by
the human visual system.

5. Imitation of visual illusions

Visual illusions seem to be caused by image pro-
cessing occurring in the brain. In this section, we
imitate the mechanism of Ehrenstein illusion, neon

color spreading illusion, watercolor illusion, Kanizsa
illusion, shifted edges illusion, and hybrid image
illusion using OpenCV’s image processing functions
and CNN templates. Note that some illusion images
have been simplified or deformed in order to enable
their recognition by the OpenCV, and the CNN.

5.1. Ehrenstein illusion

1. The OpenCV can imitate the Ehrenstein illusion
by using the programming functions cvHough-
Circles and cvCircle. The function cvHoughCir-
cles finds circles in a grayscale image14 using
the Hough transform. A detected circle can be
transformed into a set of three parameters, repre-
senting its center and radius. The function cvCir-
cle can draw a simple or filled circle with given
center and radius. In order to imitate the mech-
anism of Ehrenstein illusion, we assume that
the “OpenCV’s eye” constructs a multilayered
image15 from the detected objects, and empha-
sizes a top layer object by brightening it.

13See also the gallery of the Computational Visual Cognition Laboratory: http://cvcl.mit.edu/hybridimage.htm
14The function cvCVtColor can convert an input image from one color space to a grayscale image.
15A layer is an individual level of an image. Think of it as a transparent sheet. A multilayered image is formed by stacking
multiple images together. Layer can be added, deleted, and pixels may be blended in a variety of ways.

January 16, 2009 14:39 02257

3572 M. Itoh & L. O. Chua

Fig. 28. Ehrenstein illusion. The cvHoughCircles detect an illusory circle from the illusory image (left). Its center and circle
are painted in green and blue, respectively (center). The cvCircle fills this circle with a whiter color than the background
(right).

In our computer simulations, the cvHough-
Circles detect an illusory circle from a series of
radial lines, and the cvCircle fills the top layer
circle in a brighter color than the background
(Figs. 28 and 29).

In the case of the Ehrenstein illusion with
a colored ring (Fig. 30), consider the multilay-
ered image of Fig. 31. In our computer simu-
lations, the cvHoughCircles detects two illusory
circles from a series of radial lines. By the above
assumption, the cvCircle fills the circle on the
top-layer in a brighter color than the background
(Fig. 30).

2. The CNN can also imitate the Ehrenstein illu-
sion with the help of OpenCV (Figs. 32–35).
The watershed segmentation CNN fills the circle
which the cvHoughCircles found in the grayscale

image. Then, the marker CNN adds an illu-
sory white disk to the Ehrenstein illusion image.
Thus, the illusory image can be realized by the
equilibrium state of the marker CNN. Note that
there are several ways to imitate the illusion as
shown in Figs. 32–35.

In the case of the Ehrenstein illusion with a
colored ring, the watershed segmentation CNN
fills the inner circle which the cvHoughCir-
cles found in the illusory image. The nega-
tive image CNN transforms a black disk into
a white disk. Then, the marker CNN adds an
illusory white disk to the Ehrenstein illusion
image. Thus, the illusory image can be realized
by the equilibrium state of the marker CNN
(Fig. 36).

3. These imitation mechanisms are summarized as
follows:

Imitation of Ehrenstein Illusion

OpenCV ccvHoughCircles ⇒ OpenCV’s drawing
functions

⇒ illusory image

CNN & OpenCV cvHoughCircles ⇒ watershed segmentation
and marker CNNs

⇒ equilibrium state

5.2. Neon color spreading illusion

1. The OpenCV can imitate the neon color spread-
ing illusion by using the programming functions
cvHoughCircles and cvCircle. In order to imi-
tate the illusion mechanism, we assume that the
OpenCV’s eye constructs a multilayered image
from the detected objects. In our computer sim-
ulations, the cvHoughCircles detects an illusory

circle from a series of cross lines (Fig. 37).
By reconstructing a multilayered image from a
detected circle, the cvCircle fills the top-layer cir-
cle in red (Figs. 37 and 38). If the cross has any
gap, the illusory disk disappears (Fig. 39). In this
case, consider the multilayered image of Fig. 40.
The cvHoughCircles detects two illusory circles

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3573

Fig. 29. Two-layered image of Ehrenstein illusion, which is formed by stacking two images together (upper figure). Ehrenstein
illusion is obtained by combining (adding) these two-layered images (lower figure).

Fig. 30. Ehrenstein illusion image with a colored ring. The cvHoughCircles detect two illusory circles from the illusory image
(left). Their centers and circles are painted in green and blue, respectively (center). The cvCircle fills the top circle with a
whiter color than the background (right).

January 16, 2009 14:39 02257

3574 M. Itoh & L. O. Chua

Fig. 31. Multilayered image of Ehrenstein illusion with a colored ring, which is formed by stacking three images together
(upper figure). Ehrenstein illusion image with a colored ring is obtained by combining (adding) these three-layered images
(lower figure).

Fig. 32. Illusory disk can be generated by the water segmentation CNN, whose input image uij , initial state xij(0), and
output image yij are illustrated from left to right.

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3575

Fig. 33. Illusory white disk can be generated by the negative image CNN. A black disk image (left) is transformed into a
negative image (right) by this CNN.

Fig. 34. Imitation of Ehrenstein illusion via CNN (32). Illusory white disk is added to the original illusion image by the
marker CNN, whose input image uij , initial state xij(0), and output image yij are illustrated from left to right. Note that
the marker CNN (32) adds white markers using the “white” objects of a binary input image.

Fig. 35. Imitation of Ehrenstein illusion via CNN. Illusory white disk can be also generated by the marker CNN (31), whose
input image uij , initial state xij(0), and output image yij are illustrated from left to right. Note that the marker CNN (31)
adds white markers using the “black” objects of a binary input image.

January 16, 2009 14:39 02257

3576 M. Itoh & L. O. Chua

Fig. 36. Imitation of Ehrenstein illusion with a colored ring via CNN. The water segmentation CNN generates a black disk
(top). The negative image CNN transforms a black disk into a white disk (middle). The marker CNN adds an illusory white
disk to Ehrenstein illusion image. Note that the center disk of the right figure is whiter than that of the center figure. Input
images, initial states and output images of these CNNs are illustrated from left to right.

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3577

Fig. 37. Neon color spreading illusion image (left). The cvHoughCircles detect an illusory circle from the illusory image (left).
Its center and circle are painted in green and red, respectively (center). The cvCircle fills the top-layer circle in dark red (right).

Fig. 38. Two-layered image of neon color spreading (upper figure). Neon color spreading illusion image is obtained by
combining these two-layered images (lower figure).

January 16, 2009 14:39 02257

3578 M. Itoh & L. O. Chua

Fig. 39. Neon color spreading illusion image with a black ring. The cvHoughCircles detect two illusory circles from the illusory
image (left). Their centers and circles are painted in green and red, respectively (center). The cvCircle emphasizes the black
ring (right) by gray lines.

Fig. 40. Neon color spreading illusion image with a black ring is obtained by combining (adding) the two-layered images.

from a given image. The cvCircle emphasizes the
black ring by constructing the multilayer image
(Fig. 40).

2. The CNN can imitate the neon color spread-
ing illusion with the help of OpenCV (Fig. 41).
The watershed segmentation CNN fills the cir-
cle which the cvHoughCircles found in the illu-
sory image. The painting CNN colors a black
disk with dark red. The marker CNN adds the
dark red disk to the illusory image. Thus, the

illusory image can be realized by the equilib-
rium state of the marker CNN. When the cross
has any gap, the cvHoughCircles finds two cir-
cles and their centers in an illusory image. The
painting CNN colors them with dark gray. The
marker CNN adds dark gray rings to the illusory
image (Fig. 42). Thus, the illusory image can be
realized by the equilibrium state of the marker
CNN.

3. The imitation mechanisms are summarized as
follows:

Imitation of Neon Color Spreading Illusion

OpenCV ccvHoughCircles ⇒ OpenCV’s drawing
functions

⇒ illusory image

CNN & OpenCV cvHoughCircles ⇒ watershed segmentation
and marker CNNs

⇒ equilibrium state

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3579

Fig. 41. Imitation of neon color spreading illusion via CNN. An illusory disk is generated by the water segmentation CNN
(top). It is colored with dark red by the painting CNN (middle). The marker CNN adds dark gray rings to the illusory image
(bottom). Input images, initial states, and output images of these CNNs are illustrated from left to right.

5.3. Kanizsa illusion

1. The OpenCV can imitate the Kanizsa illusion by
using the programming functions cvHoughLines2
and Square Detector.16 The function cvHough-
Lines2 finds lines in a grayscale image using a
standard Hough transform, or a probabilistic
Hough transform. The Square Detector finds

squares from a given image. In order to imi-
tate the illusion mechanism, we assume that the
OpenCV’s eye constructs a multilayered image
from the detected objects.

In our computer simulations, the cvHough-
Lines2 finds four long lines from the illusory
image if the standard Hough transform is used,

16“Square Detector” program is included in the OpenCV sample programs.

January 16, 2009 14:39 02257

3580 M. Itoh & L. O. Chua

Fig. 42. Imitation of neon color spreading illusion via CNN. Two circles are colored with dark gray by the painting CNN.
Illusory black ring can be generated by the marker CNN. Input images, initial states, and output images of these CNNs are
illustrated from left to right.

and it finds four short lines if the probabilistic
Hough transform is used (Fig. 43). The Square
Detector finds a square from the image which is
marked by the cvHoughLines2, and fills a square
in blue by constructing the multilayer image
(Figs. 43 and 44).

2. The CNN can imitate Kanizsa illusion with
the help of OpenCV (Fig. 45). The watershed

segmentation CNN fills the square, which the
cvHoughLines2 found from the illusory image.
Then, the painting CNN colors it with dark blue.
The marker CNN next adds the dark square to
the original illusory image. Thus, the illusory
image can be realized by the equilibrium state
of the marker CNN.

3. The imitation mechanisms are summarized as
follows:

Imitation of Kanizsa Illusion

OpenCV cvHoughLines2 ⇒ Square Detector ⇒ illusory image

CNN & OpenCV cvHoughLines2 ⇒ watershed segmentation
and marker CNNs

⇒ equilibrium state

5.4. Shifted edges illusion

1. The OpenCV can imitate the shifted edges
illusion by using the programming functions
cvCanny and cvHoughLines2. The function
cvCanny finds the edges on the input image and

marks them in the output image using the Canny
algorithm.

In our computer simulations, the cvHough-
Lines2 finds many long lines from the output

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3581

Fig. 43. Kanizsa illusion. The cvHoughLines2 finds four long lines from the illusory image (top left) if the standard Hough
transform (top center) is used, and finds four short lines if the probabilistic Hough transform is used (top right). The Square
Detector finds a square (bottom center) from the image which is marked by the cvHoughLines2 (top right), and fill a square
in dark blue (bottom).

Fig. 44. Kanizsa illusion image is obtained by combining (adding) the two-layered images.

image of the cvCanny if the standard Hough
transform is used, and finds many short lines
if the probabilistic Hough transform is used
(Figs. 46 and 47). Observe that the cvHough-
Lines2 detects many tilted horizontal lines if
the standard Hough transform is used. Thus
the entire row appears to tilt though shifted
rectangles are horizontally aligned. Note that

each row is aligned horizontally and does not tilt
in the output image of the cvCanny.

2. The CNN can imitate the shifted edges illusion
with the help of OpenCV (Figs. 48–51). The
cvHoughLines2 detects many tilted lines. The
marker CNN adds illusory lines to the input
image. Thus, the illusory image can be realized
by the equilibrium state of the marker CNN.

January 16, 2009 14:39 02257

3582 M. Itoh & L. O. Chua

Fig. 45. Imitation of Kanizsa illusion via CNN. An illusory black square is generated by the water segmentation CNN (top).
It is colored with dark blue by the painting CNN (middle). Illusory square is added to the input image by the marker CNN
(bottom). Input images, initial states, and output images of these CNNs are illustrated from left to right.

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3583

Fig. 46. Shifted edges illusion [Kitaoka, 2007] (top left). Observe that each row is aligned horizontally, and it does not tilt in
the cvCanny output image (top right). The cvHoughLines2 finds long lines from the output image of the cvCanny if the stan-
dard Hough transform is applied (bottom left), and finds short lines if the probabilistic Hough transform is applied (bottom
right). Observe that the cvHoughLines2 detects many tilted horizontal lines if the standard Hough transform is used. Thus,
the entire row appears to tilt horizontally.

3. The imitation mechanisms are summarized as follows:

Imitation of Shifted Edges Illusion

OpenCV cvCanny and
cvHoughLines2 ⇒ OpenCV’s drawing

functions
⇒ illusory image

CNN & OpenCV cvCanny and
cvHoughLines2 ⇒ marker CNN ⇒ equilibrium state

5.5. Watercolor illusion

1. The OpenCV can imitate the watercolor illusion by using the watershed program.17 This program splits
an image into areas, based on the topology of the image. Before passing the image to the watershed
algorithm, the desired regions have to be marked roughly.

In our computer simulations, the watershed program tints the interior of the figure with the similar
hue of the lighter colored line (Fig. 52).

17The watershed program is included in the OpenCV sample programs. The watershed segmentation is performed by the
function cvWatershed in this program.

January 16, 2009 14:39 02257

3584 M. Itoh & L. O. Chua

Fig. 47. Shifted edges illusion [Kitaoka, 2007] (top left). Observe that each row tilts neither horizontally nor vertically in the
cvCanny output image (top right). The cvHoughLines2 finds long lines from the output image of the cvCanny if the standard
Hough transform is applied (bottom left), and finds short lines if the probabilistic Hough transform is applied (bottom right).
Observe that the cvHoughLines2 detects many tilted horizontal and vertical lines if the standard Hough transform is used.
Thus, the entire row appears to tilt horizontally and vertically.

2. The CNN can imitate the watercolor illusion with the help of OpenCV (Fig. 53). The cvThreshold
function (or Thresholding CNN) converts an illusory image into a binary image. The marker CNN tints
the interior of the binary image with yellow.

3. The imitation mechanisms are summarized as follows:

Imitation of Watercolor Illusion

OpenCV cvWatershed ⇒ OpenCV’s drawing
functions

⇒ illusory image

CNN & OpenCV cvThreshold or
thresholding CNN ⇒ marker CNN ⇒ equilibrium state

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3585

Fig. 48. Imitation of shifted edges illusion via CNN. Many illusory lines detected by cvHoughLines2 are added to the input
image by the marker CNN, whose input image uij , initial state xij(0), and output image yij are illustrated from left to right.

Fig. 49. Imitation of shifted edges illusion via CNN. Short lines detected by cvHoughLines2 are added to the input image by
the marker CNN, whose input image uij , initial state xij(0), and output image yij are illustrated from left to right.

Fig. 50. Imitation of shifted edges illusion via CNN. Many tilted horizontal and vertical lines detected by cvHoughLines2 are
added to the input image by the marker CNN, whose input image uij , initial state xij(0), and output image yij are illustrated
from left to right.

5.6. Hybrid image illusion

1. The OpenCV can imitate the hybrid images
by using the programming functions cvThresh-
old and cvAdaptiveThreshold, which convert the
input image to binary or black-and-white image,
and apply the fixed-level threshold and adaptive
threshold to input image, respectively.

In our computer simulations, the cvThreshold
and cvAdaptiveThreshold extract two kinds of
pictures from the hybrid image. One is the pic-
ture with the low-spatial frequencies and the
other is the picture with the high spatial fre-
quencies. Observe that the cvThreshold and
cvAdaptiveThreshold can extract a motorcycle

January 16, 2009 14:39 02257

3586 M. Itoh & L. O. Chua

Fig. 51. Imitation of shifted edges illusion via CNN. Short horizontal and vertical lines detected by cvHoughLines2 are added
to the input image by the marker CNN, whose input image uij , initial state xij(0), and output image yij are illustrated from
left to right.

Fig. 52. Watercolor illusion [Pinna & Grossberg, 2005]. The watershed program splits an image into areas, which are marked
by red circles. Observe that the interior of the figure is tinted with the similar hue of the lighter colored line.

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3587

Fig. 53. Imitation of watercolor illusion via CNN. The cvThreshold function converts an illusory image into a binary image
(top and third rows). The marker CNN tints the interior of the binary image with yellow. Input images, initial states, and
output images of the marker CNN are illustrated from left to right (the second, fourth, and fifth rows).

January 16, 2009 14:39 02257

3588 M. Itoh & L. O. Chua

Fig. 54. Motorbicycle (hybrid image of a motorcycle and a bicycle [Oliva et al., 2006]). At close perceptual range, the parts of
the motorcycle appear to belong to the shadow of the bicycle. Once the viewer steps back from the image, what appears to be
cast shadows from the bicycle will regroup to form a motorcycle (top). Observe that the cvThreshold and cvAdaptiveThreshold
can extract a motorcycle (bottom left) and a bicycle (bottom right) from the hybrid image, respectively.

and a bicycle from the hybrid image, respectively
(Fig. 54). In the case of catwoman, the cvAdap-
tiveThreshold extracts both woman’s face and
cat’s face by using different block size (namely,
the size of a pixel neighborhood), which is used to
calculate a threshold value for the pixel (Fig. 55).

2. The CNN can imitate the hybrid image using
the thresholding CNN. The thresholding CNNs
for z∗ = 0.15 and z∗ = −0.3 can extract a

motorcycle and a bicycle from the hybrid image,
respectively (Fig. 56). In the case of catwoman,
the thresholding CNNs for z∗ = 0.35 and z∗ = 0
can extract cat’s face and woman’s face from the
hybrid image, respectively (Fig. 57). The marker
CNN can add the extracted image to the illusory
image.

3. The imitation mechanisms are summarized as
follows:

Imitation of Hybrid Image Illusion

OpenCV cvThreshold and
cvAdaptiveThreshold ⇒ OpenCV’s drawing

functions
⇒ illusory image

CNN Thresholding CNN ⇒ marker CNN ⇒ equilibrium state

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3589

Fig. 55. Catwoman (hybrid image of woman’s face and cats’ face [Oliva et al., 2006]). Woman’s face that turns into a
cat (right) at close distance (top). Observe that the cvAdaptiveThreshold can extract cat’s face (middle) and woman’s face
(bottom) from the hybrid image by changing the block size to calculate a threshold value. The block sizes for cat’s face and
woman’s face are 7 × 7 and 15 × 15, respectively. The processed binary images are superimposed to the original color figure
(right).

5.7. Anomalous motion illusion

Applying the morphological gradient to the anoma-
lous motion illusions (Figs. 32–41), we obtained
three kinds of output images:

• Pale colored image (Figs. 58–61). Illusory motion
is obtained by the vector originating from the

dark blue part of the object and terminating at
the bright blue or white part.

• Single colored image (Figs. 62 and 63). Illu-
sory motion is not obtained from the morpho-
logical gradient output images. However, it is
directly obtained by the original single colored
image. That is, the illusory motion is defined by

January 16, 2009 14:39 02257

3590 M. Itoh & L. O. Chua

Fig. 56. Imitation of hybrid image via thresholding CNNs. The thresholding CNNs for z∗ = 0.15 and z∗ = −0.3 can extract
a motorcycle (bottom left) and a bicycle (bottom right) from the hybrid image, respectively.

the vector originating from the dark part of the
object and terminating to the bright or white
part.

• Bright colored image (Figs. 64–67). Illusory
motion is obtained by the vector originating from
the nonpink part of the object and terminating
at the pink part.

In our computer simulations, the central drift illu-
sion [Kitaoka, 2007]) (which occur in the cen-
tral vision) has a pale or a single colored out-
put image. However, the peripheral drift illusion
[Kitaoka, 2007]) (which occurs in the peripheral)
has a bright colored output image. This suggests
that the color contrast plays an important role in
the anomalous motion illusion (Figs. 64–67).

1. The OpenCV can imitate the anomalous motion
illusion by using the programing functions

morphological gradient and cvCalcOpticalFlow-
PyrLK.18 The cvCalcOpticalFlowPyrLK can
generate the optical flows as shown in Figs. 68
and 69, though we have to prepare two input
images.

2. The CNN can imitate the central drift illusion
using the shift translation templates. The shift
translation CNN rotates a ring of carrots clock-
wise by using the transformation between the
(x, y)-plane and the (r, θ)-plane (Fig. 70). If an
image is displayed on the computer screen then
quickly replaced by a new image that is similar
to the previous image, but shifted slightly, then
illusory movement is created. Thus, the rotated
carrots can create the illusory motion.

In the case of the peripheral drift illusion,
the shift translation CNN moves lines of bean-
jam cakes to left or right (Fig. 71). These shifted

18The programming function CalcOpticalFlowPyrLK calculates optical flow for two images using iterative Lucas-Kanade
method in pyramids (for more details, see the OpenCV Reference Manual).

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3591

Fig. 57. Imitation of hybrid image illusion via CNNs. The thresholding CNNs for z∗ = 0.35 and z∗ = 0 can extract cat’s face
(middle)and woman’s face (bottom) from the hybrid image, respectively. The processed binary images are superimposed to
the color figure by using the marker CNN (right).

January 16, 2009 14:39 02257

3592 M. Itoh & L. O. Chua

Fig. 58. Rotating carrots [Kitaoka, 2007]. A ring of carrots appear to rotate slowly (top). Applying the morphological gradient
to this illusory image, we obtain the pale image (bottom) and the illusory motion of carrots (bottom right).

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3593

Fig. 59. Slow snake [Kitaoka, 2007]. The row appears to move toward the “head” (top). Applying the morphological gradient
to this illusory image, we obtain the pale image (bottom left) and the illusory motion of slow snake (bottom right).

January 16, 2009 14:39 02257

3594 M. Itoh & L. O. Chua

Fig. 60. Pink eyes [Kitaoka, 2007]. Pink eyes appear to expand a little (top). Applying the morphological gradient to this
illusory image, we obtain the pale image (middle), and the illusory motion of pink eyes (bottom).

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3595

Fig. 61. Expanding pupil [Kitaoka, 2007]. The black circle appears to expand while the outer yellow circle appears to contract
(top). Applying the morphological gradient to this illusory image, we obtain the pale image (bottom left) and the illusory
motion of pupils (bottom right).

January 16, 2009 14:39 02257

3596 M. Itoh & L. O. Chua

Fig. 62. Rotating shells [Kitaoka, 2007]. The inner ring appears to rotate counterclockwise while the outer one appears to
rotate clockwise (top and bottom left). Applying the morphological gradient to this illusory image, we obtain the red ring
(bottom right).

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3597

Fig. 63. Rotating purple almonds [Kitaoka, 2007]. The left ring appears to rotate counterclockwise while the right clockwise
(top and middle). Applying the morphological gradient to this illusory image, we obtain the green ring (bottom).

January 16, 2009 14:39 02257

3598 M. Itoh & L. O. Chua

Fig. 64. Bean-jam pancakes [Kitaoka, 2007]. Rows of bean-jam pancakes in the top figure appear to move (top). Applying
the morphological gradient to this illusory image, we obtain the bright image (middle) and the illusory motion of bean-jam
cakes (bottom).

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3599

Fig. 65. Falling tornado [Kitaoka, 2007]. The inner three rings appear to contract while the outermost ring appears to expand
(top). Applying the morphological gradient to this illusory image, we obtain the bright image (bottom left) and the illusory
motion of tornado (bottom right).

January 16, 2009 14:39 02257

3600 M. Itoh & L. O. Chua

Fig. 66. Hubs [Kitaoka, 2007]. The left rings appear to rotate counterclockwise while the right ones clockwise (top). Apply-
ing the morphological gradient to this illusory image, we obtain the bright image (middle) and the illusory motion of hubs
(bottom).

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3601

Fig. 67. Cicada-crab goblin [Kitaoka, 2007]. A pattern in the top figure appears to move (top). Applying the morphological
gradient to this illusory image, we obtain the bright image (middle) and the illusory motion of a cicada-crab goblin (bottom).

January 16, 2009 14:39 02257

3602 M. Itoh & L. O. Chua

Fig. 68. Optical flow of the central drift illusion. The yellow arrows indicate the illusory motion of carrots (middle right).
The cvCalcOpticalFlowPyrLK generates the optical flow of the illusion image (bottom).

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3603

Fig. 69. Optical flow of the peripheral drift illusion. The green arrows indicate the illusory motion of bean-jam cakes (third),
which are obtained from the morphological gradient image (second). The cvCalcOpticalFlowPyrLK generates the optical flow
of the illusion image (bottom).

January 16, 2009 14:39 02257

3604 M. Itoh & L. O. Chua

Fig. 70. Imitation of the central drift illusion via the shift translation CNN. A ring of carrots is transformed into the (r, θ)-
plane (top). Then, the shift translation CNN moves a line of carrots to the left, whose input image uij , initial state xij(0),
and output image yij are illustrated from left to right (middle). Next, a line of carrots is transformed into the (x, y)-plane
(bottom). Observe that the ring of carrots rotates clockwise.

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3605

Fig. 71. Imitation of the peripheral drift illusion via the shift translation CNN. The shift translation CNN moves lines of
bean-jam cakes to the right (upper line) and left (lower line), whose input image uij , initial state xij(0), and output image
yij are illustrated from top to bottom.

January 16, 2009 14:39 02257

3606 M. Itoh & L. O. Chua

Fig. 72. Imitation of the peripheral drift illusion via the shift motion CNN. The shift motion CNN can move bean-jam cakes
to the right (upper line) and left (lower line) continuously, whose initial state xij(0) and output image yij at t = 50 are
illustrated from top to bottom.

images can also create illusory motion. Furthermore, if each color component of illusory image consists
of a binary image, then the shift motion CNN can move the bean-jam cakes continuously (Fig. 72).

3. The imitation mechanisms are summarized as follows:

Imitation of Anomalous Motion Illusion

OpenCV cvCalcOpticalFlowPyrLK ⇒ illusory image

CNN shift translation
or shift motion CNN

⇒ equilibrium state
or moving state

5.8. Glare effect illusion

In the glare effect illusion, a white target
surrounded by luminance gradients appears self-
luminous and expands a little. Applying the mor-
phological gradient to the glare effect illusion image,
we can obtain the direction of glare, which is defined
by the vector originating from the dark blue part of

the object and terminating to the bright blue or
white part (Fig. 73).

1. The cvCalcOpticalFlowPyrLK in the OpenCV
can generate the optical flow of glare effect image
(Fig. 74).

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3607

Fig. 73. Glare effect illusion [Kitaoka, 2007]. The white targets surrounded by luminance gradients appear self-luminous and
expand a little. Applying the morphological gradient to this illusory image, we obtain the pale image (bottom left) and the
glare direction (bottom right).

2. The shift translation CNN can expand a flower a little by using the transformation between the (x, y)-
plane and the (r, θ)-plane (Fig. 75).

3. The imitation mechanisms are summarized as follows:

Imitation of Glare Effect Illusion

OpenCV cvCalcOpticalFlowPyrLK ⇒ illusory image

CNN shift translation CNN ⇒ equilibrium state

5.9. Advantage of using CNN

The image processing of CNNs is dynamic, how-
ever, that of the OpenCV is static, since the CNN
is defined by a system of differential equations, and
the OpenCV is usually defined by nonlinear or lin-
ear functions. By integrating the OpenCV into the
CNN image processing, we can use both dynamic

and static properties. The advantage of using CNN
can be described as follows:

• The transition between an initial image and an
illusory image can be observed visually by using
the CNN simulator.

January 16, 2009 14:39 02257

3608 M. Itoh & L. O. Chua

Fig. 74. Optical flow of the glare effect illusion. The cvCalcOpticalFlowPyrLK generates the optical flow of glare effect image.
The blue arrows indicate the direction of glare and expansion.

January 16, 2009 14:39 02257

Imitation of Visual Illusions via OpenCV and CNN 3609

Fig. 75. Imitation the glare effect illusion via the shift motion CNN. A flower is expanded by the shift motion CNN.

• The CNN can move the illusory image continu-
ously.

• The CNN uses only input and initial state images,
and multilayered image is not necessary to obtain
illusory images.

6. Conclusion

We have imitated the mechanism of Ehrenstein
illusion, neon color spreading illusion, watercolor
illusion, Kanizsa illusion, shifted edges illusion,
hybrid image illusion, anomalous motion illusion,
and glare effect illusion using the OpenCV program-
ming functions and the CNN templates.

In this paper, we do not suggest that human
illusions are generated by the mechanism of
OpenCV and CNNs. However, those imitations sug-
gest that some color illusions are processed by high-
level brain functions, and the contrast of the colors
plays an important role in the visual illusion. Fur-
thermore, we suppose that some visual illusions may
be processed by the illusory movement of the ani-
mation.

References

Canny, J. [1986] “A computational approach to edge
detection,” IEEE Trans. Patt. Anal. Mach. Intell. 8,
679–698.

Chua, L. O. [1998] CNN: A Paradigm for Complexity
(World Scientific, Singapore).

Chua, L. O. & Roska, T. [2002] Cellular Neural Networks
and Visual Computing (Cambridge University Press,
Cambridge).

Itoh, M. & Chua, L. O. [2003] “Designing CNN genes,”
Int. J. Bifurcation and Chaos 13, 2739–2824.

Itoh, M. & Chua, L. O. [2007] “Advanced image process-
ing cellular neural networks,” Int. J. Bifurcation and
Chaos 17, 1109–1150.

Kitaoka, A. [2007] How is the Brain Deceived? Per-
fect Demonstration of Visual Illusions (Newton Press,
Tokyo) (in Japanese).

Meyer, F. [1992] “Color image segmentation,” Proc. Int.
Conf. Image Processing and its Applications, pp. 303–
306.

Oliva, A., Torralba, A. & Schyns, P. G. [2006] “Hybrid
images,” ACM Trans. Graph. (Siggraph) 25, 527–532.

Pinna, B. & Grossberg, S. [2005] “The watercolor illu-
sion and neon color spreading: A unified analysis of
new cases and neural mechanisms,” J. Opt. Soc. Am.
A 22, 2207–2221.

Werner, J. S., Pinna, B. & Spillmann, L. [2007] “Illusory
color and the brain,” Sci. Amer. 296, 70–75.

