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Gas source localization (GSL) with mobile robots is a challenging task due to the unpredictable nature of gas dispersion,
the limitations of the currents sensing technologies, and the mobility constraints of ground-based robots. This work pro-
poses an integral solution for the GSL task, including source declaration. We present a novel pseudo-gradient-based
plume tracking algorithm and a particle filter-based source declaration approach, and apply it on a gas-sensitive
micro-drone. We compare the performance of the proposed system in simulations and real-world experiments against
two commonly used tracking algorithms adapted for aerial exploration missions.
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1. Introduction

Airborne gas source localization (GSL) is important for
leakage detection on geodynamically active regions,
waste disposals, landfill sites, and carbon capture and
storage (CCS) areas. The vast majority of approaches
that have been proposed for GSL take inspiration from
insects and other simple life forms. Insects have the out-
standing ability to find distant sources of odors by track-
ing wind-borne odor plumes to their emission source.[1]
In an analogous way, robots try to mimic their plume
tracking behavior to reach the source, where they declare
the end of their task.[2] Insects and other animals that
have inspired robotics research for gas plume tracking
include: moths, which use odor localization to find
mates,[3] lobsters, which locate food through chemical
sensing,[4] Escherichia coli bacteria, which use odor
localization to find nutrients,[5] and dung beetles, which
use odor localization to find hatching niches and food.[5]
Bio-inspired algorithms are generally based on two prin-
ciples: chemotaxis and anemotaxis. Chemotaxis refers to
a mechanism in which the movement of an organism (or
robot) is determined by the gas distribution, most often
by the concentration gradient. Anemotaxis instead refers
to a mechanism in which the movement of an organism
(or robot) is determined by the sensed airflow (or fluid
flow).

In addition, engineering approaches for GSL have
also been proposed. Vergassola et al. [6], for example,

presented a search strategy called ‘infotaxis’. Infotaxis is
based on probability and information theory, and was
designed to work in turbulence-dominated environments.
The location of the source is modeled as a probability
distribution which is derived from previously collected
concentration measurements. The robot tries to reduce
the entropy of the modeled distribution by moving to
neighboring locations for which a high information gain
is expected.

To the author’s knowledge, implementations of these
algorithms have been tested and evaluated exclusively on
ground-based robot platforms, autonomous underwater
vehicles (AUV), and blimps. Ground-based robots can-
not reach the emission source in certain cases due to,
e.g., obstacles or rough terrain. Blimps, on the other
hand, are highly affected by the wind and have a bad
size-to-payload proportion. To overcome the constraints
of ground-based robots and blimps, we propose a
quickly deployable, flying mobile measurement device
based on a quadrocopter.

This work deals with the problem of GSL in natural
environments with a quadrocopter-based micro-drone.
The rotors of the micro-drone induce disturbances, which
heavily affect the gas distribution. Ground-based mobile
robots could be operated at very low speeds, which
affect the gas distribution only marginally in comparison
to a micro-drone. Thus, the task of GSL becomes even
more challenging when being airborne. Furthermore,
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most experiments have been performed under simplified
conditions, such as a steady constant airflow and the
presence of a single gas source emitting a known chemi-
cal compound at a constant release rate. However, the
airflow in an open outdoor environment is turbulence-
dominated [7] creating complex structures of gas patches
with different concentration levels. To the author’s
knowledge, it is the first time that this task is accom-
plished with an airborne micro-drone in real-world sce-
narios.

This paper is structured as follows, we first present
in Section 2 a gas-sensitive micro-drone that is the basis
for the real-world experiments performed in this work,
including a novel approach to estimate the wind vector
based on the micro-drone’s onboard sensors. Next, we
discuss three bio-inspired plume tracking algorithms for
a gas-sensitive micro-drone in more detail (Section 3):
the surge-cast algorithm (a variant of the silkworm moth
algorithm),[8] the zigzag/dung beetle algorithm,[9] and a
newly developed algorithm called ‘pseudo gradient-based
algorithm’. The latter includes a new measuring strategy
to deal with the strong disturbances induced by the
rotors of the micro-drone – measuring a local concentra-
tion gradient with spatially separated sensors is in this
case not feasible. The task of declaring the source is still
an open issue rarely addressed in the past. This work
provides an integral solution for the GSL task, by incor-
porating gas source declaration with a novel particle fil-
ter (PF)-based approach (Section 4). We compare the
performance of the algorithms in simulation and real-
world experiments with each other (Sections 5 and 6),
draw conclusions, and identify directions of future work
(Section 7).

2. Design of the gas-sensitive micro-drone

2.1. Robotic platform

The Airrobot AR100-B micro-drone (Airrobot GmbH
& Co. KG, Germany, in this article referred to as

micro-drone) has a diameter of 1m and is driven by four
brushless electric motors (Figure 1(a)). The maximum
payload mass amounts to 200 g with a total flight mass
of about 1.3 kg. The onboard LiPo battery allows a flight
time of up to 30min. The micro-drone can withstand a
maximum wind speed of 8ms�1. The micro-drone can
be operated manually or in Global Positioning System
(GPS) mode, e.g., by autonomous waypoint following
with a step size ofP 1m. The flight control relies on an
onboard inertial measurement unit (IMU), which also
provides the basis for the wind vector estimation pre-
sented in Section 2.4. The IMU consists of a three axis
accelerometer and a three axis rotation rate sensor. Mag-
netic field sensor (compass) and GPS improve the accu-
racy of the IMU, and are used to compensate for the
sensor drift. In addition, a barometric pressure sensor is
used to control the altitude of the micro-drone. Commu-
nication with the ground station is established by a wire-
less radio link. Data packets can include control
instructions or data coming from the micro-drone’s
onboard sensors. The operating distance of the remote
control and communication link is 1 km.

2.2. Gas-sensing payload

The micro-drone was modified to incorporate gas-sensi-
tive devices as payloads (Figure 1(b)). An configurable
electronic nose (e-nose) – specially adapted to the micro-
drone at AASS, Örebro University – and a commercially
available gas detector (Dräger X-am 5600, Dräger Safety
AG & Co. KGaA, Germany) were used as gas-sensitive
payloads. The e-nose is capable of accommodating up to
four commercially available metal oxide sensors and one
electrochemical cell. The Dräger gas detector can mea-
sure many combustible gases and vapors with a catalytic
sensor as well as different (toxic) gases with electro-
chemical and infrared sensors. In total, the Dräger gas
detector is capable of accommodating simultaneously
four gas sensors. The e-nose allows a sampling rate of

Figure 1. (a) Airrobot AR100-B micro-drone equipped with gas-sensitive payload and (b) schematic diagram of the gas-sensitive
payload: gas detector attached to the gas transport housing (side view). (For the colour version of this figure, please see the online
article: http://dx.doi.org/10.1080/01691864.2013.779052.)
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8Hz for each sensor, whereas the Dräger gas detector
allows a sampling rate of 1Hz for each sensor.

2.3. Gas transport to the sensors

Gas transport to the sensors is a critical process due to
the induced disturbance by the rotors of the micro-drone,
which basically dilutes and disperses the surrounded
gas–air mixture. This could be problematic for scenarios
where punctual gas sources are present or the gas sensors
work at the lower limit of detection. However, as shown
in [10], measurement of gas concentration in large vol-
umes is feasible for gas-sensitive micro-drones.

To improve the measurement capabilities for small
plumes, we present in [11] different design approaches
that lead to less diluted gas–air mixture at the gas sen-
sors. They were implemented and analyzed with respect
to their functional performance. The results of the valida-
tion experiments show that conveying the downwards
directed airflow of one rotor through a carbon fiber tube
to expose the sensors with the surrounded gas–air mix-
ture gives the best results regarding applicability and
sensitivity (Figure 1(b)). Using this gas transport
approach is also advantageous as the effective sensor
response and decay can be sped up to some degree by
the artificially generated airflow to achieve faster and
more accurate gas concentration measurements with
shorter residence time of the micro-drone.

2.4. Estimation of the wind vector

Wind information is of high importance for gas-sensitive
robots. For example, the steering trajectories of anemo-
taxis plume tracking algorithms are based on wind mea-
surements. However, due to the restrictions imposed by
the platform, the micro-drone does not carry any dedi-
cated wind sensor. Instead, we proposed in [11] a
method that can be used to estimate the wind vector by
fusing the micro-drone’s onboard sensors to compute the
parameters of the wind triangle.

The wind triangle is commonly used in aerial naviga-
tion and describes the relationships between the flight
vector ~v ¼ (rv; hv), the ground vector ~w ¼ (rw; hw), and
the wind vector ~u ¼ (ru; hu), where r denotes the length
and h the directional component of the vectors. Two of
the three vectors or four of the six parameters of the
wind triangle are needed in order to derive the remaining
parameters. However, only the ground vector ~w is
directly given by the GPS receiver of the micro-drone.
We calculate the flight speed rv by using a reference
function computed from a set of wind tunnel measure-
ments. Additionally, the orientation information coming
from the onboard compass is used to compute the flight
direction hv. Finally, the wind vector ~u is computed from
the wind triangle by applying the law of cosines.

3. Gas source localization (GSL)

The task of localizing a gas source can be broken down
into three subtasks [2]: (1) plume acquisition (find the
plume), (2) plume tracking (move the robot reactively
along/within the plume), and (3) source declaration (pre-
dict the most likely location of the emitting source).

The first two algorithms presented in this section use
only binary gas information from one sensor, i.e., they
either detect the presence/absence of the target gas. To
obtain this binary value, the average measured gas con-
centration is thresholded (thc). Using binary gas informa-
tion helps to mitigate calibration issues with the gas
sensors. The third algorithm uses directly the measured
concentrations from two spatially separated measuring
positions of one sensor. However, more sophisticated
algorithms could be used to detect the presence/absence
of the target gas.

The micro-drone was programmed to stop at each
measuring position to collect gas sensor and wind mea-
surements for a prolonged time (here: 20 s). Finally, the
collected measurement data are averaged over the mea-
surement time at each measurement point.

3.1. Plume acquisition phase

Possible plume acquisition strategies to make contact
with the plume are passive monitoring of the environ-
ment and active exploration strategies. A passive strategy
(waiting for the plume) is not feasible for a flying, high
power-consuming micro-drone. Instead, an active explo-
ration strategy has to be used, for example, a randomized
or systematic search.

In this work, the micro-drone was programmed to
follow a sweeping trajectory, i.e., the micro-drone makes
a step orthogonal to the wind direction as long as the
plume is not found. One step in upwind direction (or
search direction) is made and sweeping direction is
inverted, if the micro-drone would leave the search area.
When the plume is found, the micro-drone switches to
plume tracking.

3.2. Plume tracking phase

3.2.1. Surge-cast algorithm

Lochmatter presented in [8] the surge-cast algorithm. It
is a combination of plume tracking strategies used by the
silkworm moth and works as follows (Figure 2(a)): The
robot moves straight upwind until it looses the contact
with the plume for a certain distance dlost. Then, it tries
to reacquire the plume by searching crosswind for a
defined distance dcast on both sides. The chance of reac-
quiring the plume in the first crosswind movement is
maximized by measuring the wind direction to estimate
the side from which the robot has left the plume. Every
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time the robot switches its behavior from upwind surge
to casting and vice versa, the wind direction is re-mea-
sured.

In comparison to the original algorithm, the plume is
declared lost in the surge-cast algorithm used here when
the micro-drone measures an average gas concentration
below the threshold after one step. To reacquire the plume,
casting with increasing step size in crosswind direction is
performed. These changes were necessary to address the
constraints of the micro-drone in GPS mode. Furthermore,
the wind is re-measured for iteration of the algorithm to
adapt faster to changing wind conditions. If casting fails
to reacquire the plume (after a defined number of steps),
the micro-drone returns to the sweeping strategy.

3.2.2. Zigzag/dung beetle algorithm

The zigzag or dung beetle algorithm was first reported
by Ishida et al. [9]. The basic algorithm works as follows
(Figure 2(b)): The robot moves upwind with an angle a
(e.g., a ¼ 60

�
) across the plume constantly sensing gas

concentrations. If the gas sensor measures a concentra-
tion below a given threshold thc, the robot is assumed to
have reached the edge of the plume. It re-measures the
wind direction and continues moving upwind with an
angle �a with respect to the upwind direction. This pro-
cedure is repeated causing the robot to move in a zigzag
fashion within the plume. The robot is stopped, when it
has reached the source.

In comparison to the original algorithm, the micro-
drone does only collect gas and wind measurements at
the waypoints where it stops.

3.2.3. Pseudo-gradient-based algorithm

The idea for the first gradient-based algorithms for plume
tracking goes back to Braitenberg [12]. The chemical
gradient is measured by a pair of bilateral gas sensors
mounted on each side of a robot, each directly control-
ling the speed of a wheel. Each sensor is connected to
the motor on the same side, the motor on the opposite
side (cross-coupling), or both motors. Although it was a

purely chemotactic approach, a Braitenberg-style robot is
able to track a plume towards a gas source by following
the concentration gradient.[13]

As the first gradient-based algorithms do not consider
wind information, the robot does not know whether it is
following a plume towards or away from its source.
Turning the robot in proportion to the concentration gra-
dient in dependence of the upwind direction solves this
problem.[5]

As the rotors of the micro-drone introduce strong dis-
turbances, measuring a local concentration gradient with
spatially separated sensors is not feasible. Instead a new
measuring strategy was developed, which basically splits
up one measuring position into two spatially separated
ones. In order to respect the minimum step size of the
micro-drone of 1m and to progress faster to the source,
the step size in upwind direction was set to 1.5� step size.

The pseudo-gradient-based algorithm consists of the
following steps (Figures 2(c) and 3): The micro-drone
collects gas sensor and wind measurements at position
p1 and makes a step orthogonal to the wind direction.
The direction of the first crosswind step is given by the
current sweeping direction. At position p2 the gas
concentration and the wind is re-measured. Next, the

Figure 2. Illustration of (a) the surge-cast algorithm introduced by Lochmatter [8], (b) the zigzag algorithm introduced by Ishida
et al. [9], and (c) the pseudo-gradient-based algorithm. The stars indicate the positions where the wind direction is measured. In (a)
and (b) the gas concentration is measured permanently, whereas the gas concentration in (c) is only measured at the indicated
measuring positions. The gray dotted line is the flight path of the micro-drone. (For the colour version of this figure, please see the
online article: http://dx.doi.org/10.1080/01691864.2013.779052.)

Figure 3. Three different cases of the gradient-based
algorithm: (a) �cp1[�cp2 , (b) �cp1\�cp2 , and (c) �cp1 ¼ �cp2 . The
case �cp1 ¼ �cp2 ¼ 0 restarts the plume acquisition phase. The
red stars indicate the measuring positions, the red arrows
illustrate the averaged wind directions, and the gray dotted
line is the flight path of the micro-drone. (For the colour
version of this figure, please see the online article: http://dx.
doi.org/10.1080/01691864.2013.779052.)
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concentration gradient is calculated based on the aver-
aged gas concentrations �cp1 and �cp2 collected at position
p1 and position p2 (an average concentration below the
threshold is set to zero):

grad(�cp1 ;�cp2 ) ¼
�cp1

�cp1 þ �cp2
; grad(�cp1 ;�cp2) 2 ½0; 1� (1)

The new measuring position p3 is calculated based
on the concentration gradient grad(�cp1 ;�cp2 ) and the cen-
ter position pc (Figure 3):

where d denotes the azimuth direction angle, b is the
maximum possible upwind angle, and (�hu)p1;p2 is the
wind direction averaged over the wind data collected at
both measuring positions. If grad(�cp1 ;�cp2 )[0:5, the
upwind angle b is set to �b and the direction of the
crosswind movement is inverted. Finally, the micro-
drone flies directly to position p3 and repeats with the
first step. If �cp1 ¼ �cp2 ¼ 0, the micro-drone returns to
sweeping with changed sweeping direction.

3.3. Source declaration

In recent work, source declaration was mainly estab-
lished by reaching a predefined proximity to the known
location of the gas source with the mobile robot.
This was commonly performed visually by a human
observer.[2] First approaches without human interaction
were suggested, e.g., in [14,15]. For example, Li sent his
REMUS AUV on cloverleaf trajectories to estimate the
source location.[15]

More recently Li et al. proposed in [16] a GSL algo-
rithm based on a PF. It estimates the location of the gas
source in real-time, while the robot performs an explor-
atory behavior in an outdoor environment with time-vari-
ant airflows. They use a likelihood function in
combination with a gas patch path reconstruction
approach to calculate a so-called observation window.
The observation window defines the area where the robot
assumes to be the origin of the gas patch. In case of a
detection event, particles are added and spread out in the
observation window. Finally, the collected information is
exploited by the PF algorithm, which terminates if all

particles converged in one point within a certain radius.
Li et al. evaluated their algorithm in 33 real-world exper-
iments. However, a disadvantage of this algorithm is that
it assumes a roughly uniform airflow over the search
space.

In contrast to the PF-based GSL algorithm presented
in [16], we introduce a novel PF-based algorithm based
on a PF that not only use gas-detection events to esti-
mate the location of a gas source. Furthermore, our pro-
posed approach does not rely on a roughly uniform wind
field, which in the real-world does not exist. Instead,

measured wind data, more precisely mean and variance
of the wind, were included in the proposed approach as
indicator for the wind stability.

4. PF-based GSL algorithm

In this work, we introduce a new source declaration
algorithm based on a PF. It uses gas and wind measure-
ments to reconstruct the trajectory of a gas patch since it
was released by the gas source until it reaches the mea-
surement position of the micro-drone to estimate the gas
source location. Because of the turbulent nature of the
wind, the uncertainty in the wind direction is included in
the computation process by creating a patch path enve-
lope (PPE) instead of a single patch trajectory. The PPE
describes the envelope of an area the gas patch has
passed with high probability. The source is considered to
be found, if the location estimate remains within a small
region for a defined number of iterations.

First, we describe the preprocessing of the sensor
data (Section 4.1). Next, we show how the PPE is con-
structed (Section 4.2). Sections 4.3 and 4.4 describe the
update and resampling step of the PF algorithm. Sec-
tion 4.5 describes how the location of the gas source is
estimated based on the particle set.

4.1. Sensor data preprocessing

4.1.1. Gas sensor

To decide whether the micro-drone was within the plume
or not, a binary concentration measure zt with an adaptive

grad(�cp1 ;�cp2 )
[0:5; d ¼ (�hu)p1 þ b � 2 � (grad(�cp1 ;�cp2)� 0:5) (Figure 3(a))
\0:5; d ¼ (�hu)p2 þ b � 2 � (1� grad(�cp1 ;�cp2 )� 0:5) (Figure 3(b))
¼ 0:5; d ¼ (�hu)p1;p2 (Figure 3(c));

8<
: (2)

Advanced Robotics 729



threshold �ct is used as proposed by Li et al. [16]. This
binary concentration measure is defined as:

zt ¼ 1; if ct[�ct�1

0; otherwise

�
(3)

with

�ct ¼ k�ct�1 þ (1� k)ct; if t � 1
ct; if t ¼ 0;

�
(4)

where ct is the measured gas concentration of one sensor
averaged over the measurement interval at iteration t, c0
is the initial gas concentration detected at the start of the
algorithm, and k 2 ½0; 1�. zt ¼ 1 indicates a gas-detection
event, whereas a nondetection event is represented as
zt ¼ 0. As proposed in [16], k is set to 0:5 during all
experiments to respond correctly and in time to all gas-
detection events.

4.1.2. Wind sensor

At each iteration t, the averaged wind direction �hu and
the circular variance S0 are computed from a set of sin-
gle wind measurements taken at the current measuring
position. Here, the circular variance is used to consider
the nonregularities of the wind flow direction in the con-
struction process of the PPE.

4.2. Construction of the PPE

For the construction of the PPE we assume to collect
wind measurements with the micro-drone in turbulent
real-world environments with nonuniform wind fields.
The PPE describes the envelope of the most probable
area where the gas patch has passed. The opening angle
of the PPE depends on the degree of stability of the

wind direction. Stable wind conditions result in small
opening angles, whereas unstable and changing wind
conditions result in large opening angles.

The left and right paths of the PPE are calculated
using the great circle navigation formulae.[17] The posi-
tions l2 and r2 are determined based on the positions l1
and r1 and the azimuth direction angles dl and dr (Fig-
ure 4). The azimuth direction angles dl and dr are calcu-
lated as follows:

dl;r ¼ (�hu � 90
� � S0) mod 360

�
(5)

To consider the measurement radius of the micro-
drone due to the rotor movement and to achieve numerical
stability during stable wind conditions (e.g., the possibil-
ity of overlaying line segments in the beginning of the
paths in case of zero circular variance), the first segment
of the PPE is modeled as a simple triangle with its right
angle rotated in downwind direction based on the
averaged wind measurements.

Finally, the PPE Ct is constructed anticlockwise by
adding the vertex m0, r1, the intersection point Ir, all cor-
ner points of the area border in between the intersection
points, the intersection point Il, l1, and m0 to close the
PPE. The output of this stage is the PPE Ct (Figure 4).

4.3. Update step of the PF

The update phase calculates for each particle x½i�t of the

particle set X t the new importance weight x½i�
t 2 Xt

based on the previous importance weight x½i�
t�1 2 Xt�1,

the PPE Ct, and the binary concentration value zt. Parti-
cles within the PPE are processed differently than parti-
cles that lie outside the PPE. Furthermore, a straight line
s orthogonal to the averaged wind direction is defined
that goes through vertex m0 (Figure 4). Now, the parti-
cles are classified in one of the following three classes:
(a) particles located inside the PPE, (b) particles located
outside of the PPE in upwind direction with respect to
line s, and (c) particles located outside the PPE in down-
wind direction with respect to line s. Then, the following
function is used to update the corresponding importance
weights:

x½i�
t ¼ f (x½i�t ;x

½i�
t�1;Ct; zt)

¼

x½i�
t�1 8xt 2 (a) ^ zt ¼ 1

a � hCt
180� � x

½i�
t�1 8xt 2 (b) ^ zt ¼ 1

a2 � hCt
180� � x

½i�
t�1 8xt 2 (c) ^ zt ¼ 1

b2 � hCt
180� � x

½i�
t�1 8xt 2 (a) ^ zt ¼ 0

b � x½i�
t�1 8xt 2 (b) ^ zt ¼ 0

x½i�
t�1 8xt 2 (c) ^ zt ¼ 0

8>>>>>>>><
>>>>>>>>:

(6)

Figure 4. Construction of the PPE for the micro-drone in real-
world environments in nonuniform wind fields. The source
location is denoted by the large red dot. The measurement
radius of the micro-drone is modeled as a simple triangle given
by the positions m0, l1, and r1. The search area is defined by
the four points p1 to p4. (For the colour version of this fig-
ure, please see the online article: http://dx.doi.org/10.1080/
01691864.2013.779052.)
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where a and b are meta-parameters, which adjust the

contribution of the old importance weight x½i�
t�1 of parti-

cle x½i�t at iteration t to the new importance weight x½i�
t

and hCt 2 (0180�� is the opening angle of the first seg-
ment of the PPE (and not of the triangle). The classifica-
tion of the particles is implemented by the square of a
and b, respectively. By introducing the term hCt=180

�
in

Equation (6), an additional punishment of particles is
allowed in dependency of the stability of the wind. Small
opening angles reflect stable wind conditions. In case of
a detection event, it is assumed that the gas source is
located within the PPE as the measured gas was released
by the source and transported by the wind forming a
plume. Thus, it is very unlikely that particles which are
located outside the PPE reflect the gas source location.
Accordingly, these particles can be punished additionally.
In case of a nondetection event, it is assumed that the
gas source is not located within the PPE, which allows
further punishment of these particles as well. On the
other hand, large opening angles indicate unstable wind
conditions. Here, it is not possible to limit the large
number of possible source locations as the origin of the
measured concentration is more uncertain. Therefore, the
punishment of the particles should be much lower or
should be even omitted.

4.4. Resampling step of the PF

One problem which can occur using PF algorithms is the
degeneration of particles, i.e., most of the importance
weights have negligible weights. The effective sample
size N̂eff can be used to monitor whether resampling is
necessary [18] and can be approximated as:

N̂eff ¼ 1PN
i¼1 (x

½i�
t )

2
; (7)

where x½i�
t is the normalized importance weight of particle

x½i�t . If the effective sample size N̂eff drops below a given
threshold (here: N=2) resampling should take place, i.e.,
eliminating particles with small importance weights and
duplicating the particles with larger importance weights.

4.5. Estimation of the gas source location

The particles set X t can be used to estimate the location
of the gas source �xs. A simple strategy could be to calcu-
late the weighted mean over all particles. However,
observations have shown that the weighted mean is often
not a good estimator since it is strongly affected by
outliers (which in addition occur frequently as a conse-
quence of resampling). Furthermore, it is very unlikely
that all particles will converge in one certain point
considering the turbulent nature of the wind.

A more sophisticated strategy involves analyzing the
particle clusters that have evolved over time. The pro-
posed strategy searches the particle x½k�t with the highest
number of neighbors within a certain radius e, i.e., the k
for which

jfx½j�t j 8j 2 ½1;N � ^ k–j : jx½k�t � x½j�t j 6 egj

is maximized. In the current implementation, e is set to

0.5m. This particle x½k�t is called the maximum neighbors
estimate (MNE) and used as the gas source location esti-
mate.

5. Simulation experiments

Simulations were performed in order to determine the
performance and robustness of each plume tracking
algorithm under repeatable conditions. The performance
is measured as the distance overhead, which is defined
as the ratio between the travelled distance of the micro-
drone and the upwind distance to the gas source. This
performance metric was introduced in [8] and indicates
what distance the robot had to move in order to come
1m closer to the source (the value is therefore greater
than or equal to one). One practical advantage of this
metric is that the results are independent from the start-
ing position of the micro-drone. The robustness is
defined as the success rate of the algorithm.

In order to evaluate the performance of the PF-based
GSL algorithm, the parameters a 2 ½0:1; 1:0� and
b 2 ½0:1; 1:0� are optimized in simulations with respect
to the average localization error and the success rate for
data-sets collected with the pseudo-gradient-based algo-
rithm. The localization error is defined as the distance
between the true gas source location and the estimate
described in Section 4.5. Here, the success rate is defined
as the ratio of successful localizations, in which the
localization error is less or equal than 1.5m, with respect
to the total number of performed experiments.

As a simulation environment, we use the filament-
based gas dispersion model developed by Pashami et al.
[19]. In addition, we developed a sensor model in anal-
ogy to the one presented in [20]. The sensor response is
modeled as an exponential rise and decay using experi-
mental sensor data. The positioning system error of the
micro-drone is modeled as vector with samples of a
zero-mean normal distribution with r2 set to 1:17 (the
value was obtained from real-world experiments). To
model the disturbances of the rotors on the measure-
ments, the gas concentration values are simply averaged
at the measurement position within a radius of 0.5m
before applying the gas sensor model. The wind sensor
is modeled as a perfect sensor with the option to add
noise to the directional component. The noise is added
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using samples of a zero-mean normal distribution
(N (0; r2h)) with variable r2h.

5.1. Experimental setup

The experimental area is a simulated wind tunnel with
the size 32� 8m2. The flow speed in the wind tunnel
was set set to 0.5ms�1. A circular gas source with a
radius of 0.2m was placed in the experimental area at
position (2, 4) m. The gas source releases 500 filaments
per second, which are uniformly distributed over the cir-
cular area of the source.[19] In each run, the micro-drone
was started inside the plume at position (31, 4) m. The
step size was set to 1m. The measuring time at each
sampling location was set to 20 s with a sampling fre-
quency of 1Hz and the threshold thc was set to 0:05 (the
concentration data were normalized to one before usage).
The parameter a of the zigzag algorithm and the parame-
ter b of the pseudo-gradient-based algorithm were suc-
cessively set to 15

�
, 30

�
, 60

�
, and 75

�
(zigzag) and 30

�
,

60
�
, and 90

�
(gradient). The wind sensor noise r2h was

variable during all sets of experiments and a total of 100
runs were performed for each value of r2h .

A run was considered successful, if the micro-drone
reached a 1.5� 2m2 large area centered in front of the
source, and unsuccessful, if the robot touched an arena
wall or passed the target area. This stop criterion was
chosen as the step size constraint of �1m does not per-
mit the micro-drone to track a small scale plume. The

plume width at the source location has approx. the same
width as the source itself (here: [ ¼ 0:4 m). Therefore,
it is most likely that the micro-drone jumps over the
plume without detecting a concentration level above the
threshold. This is also the reason why larger step sizes
of the micro-drone were not investigated.

The same experimental setup was used to optimize
the meta-parameters for the PF algorithm with the follow-
ing exceptions: The source was located at position (8, 4)
m and only the gradient-based algorithm with b set to
90

�
was used as control algorithm. To model the lower

limit of detection of the modeled gas sensor, the threshold
thc was used as well. The number of particles was set to
1000. The wind sensor noise r2h was set to 14:02 and
the noise r2S0 to calculate the circular variance S0 was set
to 23:08. Both values correspond to the characteristics
of the micro-drone and were obtained from real-
world experiments,[10,11] i.e., the proposed algorithm
is optimized especially for the used robotic platform
and its measuring capabilities and characteristics. The
experiment was repeated 100 times.

5.2. Experimental results

A total of 5600 runs were performed for the three plume
tracking algorithms. A sample trajectory of a successful
run for each algorithm can be seen in Figure 5.

The results of the surge-cast algorithm are shown in
Figure 6(e). The performance of this algorithm is fairly

Figure 5. (a)–(c) Trajectories of successful simulation runs of all three bio-inspired plume tracking algorithms with r2h ¼ 14:02. The
source is indicated with the large gray circle. The smaller colored circles show the measured concentration at the sampling
locations. (d) Particles (blue points) of the PF-based GSL algorithm using the pseudo-gradient-based tracking algorithm after
133 iterations. The estimated gas source location is indicated by the green point that corresponds to the MNE. The location of
the true gas source is hidden by the green point. The red point denotes the prediction of the weighted mean. The PPE for a
nondetection event is indicated by the green line. (For the colour version of this figure, please see the online article: http://dx.
doi.org/10.1080/01691864.2013.779052.)
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Figure 6. Simulation results obtained for the different bio-inspired plume tracking algorithms: the zigzag algorithm with a set to (a)
15

�
and (b) 60

�
, the pseudo-gradient-based algorithm with b set to (c) 30

�
and (d) 90

�
, and (e) the surge-cast algorithm. The

error bars indicate the 95% confidence interval for the mean (assuming normally distributed data). The last bar is omitted in
each bar plot because of the small number of successful runs. (f) Comparison of the obtained simulation results of all three
algorithms with r2h ¼ 14:02. The error bars indicate the 95% confidence interval for the mean. (For the colour version of this
figure, please see the online article: http://dx.doi.org/10.1080/01691864.2013.779052.)
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good. The distance overhead of the algorithm is 	1:5
for r2h 	 29:12 and it seems that the wind sensor noise
has only a small influence on the performance of the
algorithm as long as the error does not exceed
r2h[29:12. However, the wind sensor noise highly
affects the success rate.

Figure 6(a) and (b) present the results of the zigzag
(casting) algorithm for a ¼ 15

�
and 60

�
. The perfor-

mance of this algorithm heavily depends on its parameter
a (upwind angle): small upwind angles result in a small
distance overhead but also in a low success rate, whereas
a large angle increases significantly the success rate and
the distance overhead at the same time as the micro-
drone has to turn more often at the plume boundaries to
stay within the plume. Thus, the upwind angle a presents
a tradeoff between robustness and performance of this
algorithm and has to be chosen carefully. Again it seems
that the wind sensor noise has only a marginal influence
on the performance of the algorithm.

The results of the pseudo-gradient-based algorithm
are presented in Figure 6(c) and (d) for b ¼ 30

�
and 90

�
.

The parameter b has only a minor influence on the per-
formance and the success rate of the algorithm. b should
not be chosen too small as a small angle probably pre-
vents the micro-drone to reacquire the plume if lost. The
wind sensor noise seems to affect mainly the success rate
of the algorithm.

Figure 6(f) shows the obtained simulation results of
all three algorithms with r2h ¼ 14:02 in a summary. It
can be seen that the zigzag algorithm with a ¼ 15

�
and

the surge-cast algorithm have the best distance overhead,
followed by the zigzag algorithm with a ¼ 30

�
. The

results of the pseudo-gradient-based algorithm lies in the
medium range, followed by the zigzag algorithm with

a ¼ 60
�
and 75

�
. Therefore, the zigzag algorithm with

a ¼ 15
�
and 30

�
and the surge-cast algorithm are the

most performant algorithms within this comparison, but
also the least robust ones. Even with a small wind sensor
error of only r2h ¼ 14:02, they are not able to reach suc-
cess rates of 100%. High robustness and reasonable dis-
tance overheads are given by the pseudo-gradient-based
algorithm and the zigzag algorithm with a ¼ 60

�
. The

zigzag algorithm with a ¼ 75
�
offers the highest robust-

ness, but produces the worst distance overhead in this
comparison.

Lochmatter [8] also performed 1350 simulated runs
for pure casting (zigzag), surge-spiraling, and surge-
casting using comparable simulation environment. Unfor-
tunately, a gradient-based algorithm was not considered
in Lochmatter’s comparison. However, our results for the
surge-cast and zigzag algorithm are comparable with the
results he obtained.

Figure 7 shows the dependency of the source
localization accuracy on the meta-parameters for the
gradient-based control algorithm with b set to 90

�
after

the last measurement point for the gas source located at
position (8; 4) m. In general, it stands out that the aver-
age localization error drops significantly with increasing
b. On the other hand, the average localization error
increases with increasing a. Thus, it seems to be benefi-
cial to choose a small value for a and a large value for
b. This means that, in case of a gas-detection event, the
particles which are located outside the PPE are penalized
much harder (in dependency of their relative position to
line s with a or a2) than, in case of a nondetection event,
the particles which are located in upwind direction of
line s (which are penalized in dependency of their rela-

tive position to the PPE with b or b2). This position-

Figure 7. Dependency on the meta-parameters of the PF-based GSL algorithm for the gradient-based control algorithm. Note that the
plots are created using a linear scale for the x-axis and a base 10 logarithmic scale for the y-axis for better data representation.
(For the colour version of this figure, please see the online article: http://dx.doi.org/10.1080/01691864.2013.779052.)
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dependent punishment of the particles allows them to
accumulate at the location of the gas source and its close
proximity.

A good parameter set for the gradient-based algorithm
which minimizes the average localization error and maxi-
mizes the success rate is found to be (a; b) ¼ (0:2; 0:8).
The average error in the simulations with this parameter
set was only 0.96m± 1.01m with a success rate of 86%
(the average error of succssful localizations is 0.62
± 0.37m).

6. Real-world experiments

6.1. Experimental setup

All plume tracking experiments were carried out in the
outdoor environment shown in Figure 8 with the micro-
drone equipped with the e-nose as gas-sensing payload.
The e-nose was equipped with a single Figaro TGS2611
gas sensor, which is highly sensitive to methane (CH4).
A CH4 gas cylinder was placed in a 20� 16 m2 large
area approx. at position (3:2; 5:7) m from the bottom left
corner. The outlet of the gas source was extended with a

small tube, which was attached to a fan in order to
spread the analyte away from the cylinder. The air
current introduced by the fan also prevented the CH4 to
immediately rise up to the atmosphere when released.
The step size of the micro-drone was set to 1.5m for the
surge-cast and the pseudo-gradient-based algorithm and
2.0m for the zigzag algorithm, respectively, and the
flight speed between the measurement positions was set
to 1ms�1. The parameter of the zigzag algorithm was
set to 60

�
in the first and 75

�
in the second run. The

parameter of the pseudo-gradient-based algorithm was
set to 60

�
. The corresponding algorithm was activated

directly after take-off.

6.2. Experimental results

Figure 9(a)–(c) show the trajectories produced by the
micro-drone and Table 1 shows the experimental results.
The plume acquisition phase and starting positions were
excluded from the evaluation to make the results
rudimentary comparable with each other. Particularly
noticeable are the runs #2 (surge-cast) and #6 (gradi-

Figure 8. Setup of the plume tracking experiments. The red arrow illustrates the main wind direction during the experiments. The start
position of the micro-drone is indicated by the red star. The micro-drone can be seen in the image enlargement in the upper right corner
of the figure. (For the colour version of this figure, please see the online article: http://dx.doi.org/10.1080/01691864.2013.779052.)

Figure 9. Trajectories of the micro-drone in real-world experiments including the plume acquisition phase. The source position is
indicated by the gray point. The gray circles mark the position of the first gas concentration measurements above the threshold. The
position, where the wind direction changed in the amount of up to 180

�
is indicated with black arrows. (For the colour version of

this figure, please see the online article: http://dx.doi.org/10.1080/01691864.2013.779052.)
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ent-based). Here, the wind direction varied significantly
during the runs precluding the micro-drone to make fur-
ther progress for some time. This is indicated in Figure 9
with black arrows. However, the overlapping confidence
intervals, the small number of experiments, the different
step sizes and upwind angles for the zigzag algorithm,
and the permanent changing structure of the plume (due
to changing wind conditions) do not permit to make a
complete statistical evaluation of the algorithms.

Table 1 shows also the results of PF-based GSL
algorithm. Although the plume tracking experiments
were stopped directly after the micro-drone passed the
source, the algorithm was able to locate the gas source
with a success rate of 83:3% (five of six trials suc-
ceeded). Measurements behind the gas source would
have been advantageous to obtain a more accurate and
reliable gas source location estimate. However, an aver-
age error of successful localizations of 0.69 ± 0.35m (the
average localization error is 1.05 ± 0.94m) could be
obtained. This result is very good considering, e.g., the
positioning system error of the micro-drone (±1.17m)
and is in line with the simulation results presented in
Section 5, where the success rate was 86% and the aver-
age localization error was 0.96 ± 1.01m (the average
error of successful localizations was 0.62 ± 0.37m).

7. Conclusions

In this article, we describe a prototype of a gas-sensitive
micro-drone, including the possibility to estimate wind
vectors without a dedicated anemometer using only the
micro-drone’s on-board sensors. Next, this work provides
an integral solution to the GSL task by including gas
source declaration, for a gas-sensitive micro-drone using
a novel PF-based GSL approach. Three bio-inspired
plume tracking algorithms and their implementation for a
gas-sensitive micro-drone were described, including a
new measuring strategy especially designed for, but not
limited to, a micro-drone.

The performance of the presented algorithms was
evaluated successfully in simulation experiments and
tested in real-world experiments. The results of the

real-world experiments demonstrate that plume tracking
with a gas-sensitive micro-drone can be done under
particular environmental conditions. The micro-drone
was able to reacquire the plume even during periods of
strongly changing wind. The initial results from the real-
world experiments indicate that the pseudo-gradient-
based algorithm is at least as efficient as the surge-cast
algorithm. A good correlation between the results from
simulation and real-world experiments can be found for
the pseudo-gradient-based algorithm and the zigzag algo-
rithm. Thus, regarding the current implementation of the
surge-cast algorithm, the pseudo-gradient-based algo-
rithm and the zigzag algorithm (with larger upwind
angle) are the most promising algorithms to use with the
micro-drone.

The meta-parameters of the PF-based GSL algorithm
were optimized successfully in robotic simulations in
order to find an optimal parameter set for the gas-
sensitive micro-drone. Furthermore, the real-world
results indicate the potential of the proposed PF-based
GSL approach for accurately localizing a single gas emis-
sion source emitting a known chemical compound in
turbulent outdoor environments with a gas-sensitive
micro-drone.

Although it was shown that plume tracking is possi-
ble under certain circumstances in the real-world, it is
difficult to locate gas sources in scenarios with changing
wind conditions and high turbulence. In [21], we demon-
strate the weakness of algorithms that directly mimic
insect behavior. However, a possible application could
be to locate the origin of a pollution caused by, e.g.,
industrial chimneys in a higher atmospheric layer, where
the airflow is more stable, or on wide open landfill sites,
geodynamically active regions, waste disposals, and CCS
areas.

For simplification, several parameters of the PF-based
algorithm were set heuristically to decrease the complex-
ity of the problem. Future work should include the opti-
mization of these parameters. The PF-based algorithm
gives ample room for improvements, e.g., the PPE could
be classified in even more regions to discriminate
between particles which are located far away from the

Table 1. Results of the real-world plume tracking experiments (excluding the plume acquisition phase).

Surge-cast Zigzag Gradient-based

Run 1 2 3 4 5 6
Total #iterations 25 36 17 29 24 38
Travelled distance (m) 21.01 41.78 18.06 44.18 29.65 26.02
Distance overhead do (m/m) 2.01 3.27 1.93 2.67 1.96 2.02
Mean 2.64 – 1.99
95% confidence interval (1.40, 3.88) – (1.93, 2.04)
PF-localization error (m) 0.73 1.18 0.77 2.86 0.56 0.21
#Neighbors (r= 0.5m) 242 416 224 608 307 604
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measuring position and those which are located in the
immediate vicinity. Future work should also include to
run large test sets with different wind and weather condi-
tions on, e.g., wide open landfill sites to obtain the per-
formance and robustness of these algorithms in natural
environments. A general extension of this work would
be to adapt these methods for the third dimension and a
sophisticated multirobot collaboration scheme may help
to reduce the time needed to cover larger areas.
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