Meeting the Climate-Change Challenge

John P. Holdren

Teresa & John Heinz Professor of Environmental Policy and Professor of Earth and Planetary Sciences Harvard University

Director, The Woods Hole Research Center

Chair of the Board, AAAS

The John H. Chafee Memorial Lecture

National Council for Science and the Environment Washington DC • 17 January 2008

Main messages

- "Global warming" is a misnomer; we should be calling it "global climatic disruption".
- The disruption & its impacts are now growing more rapidly than was expected just a few years ago.
- The world is <u>already</u> experiencing "dangerous anthropogenic interference in the climate system". The question now is whether we can avoid <u>catastrophic</u> interference.
- Our options are mitigation, adaptation, & suffering. If we do less mitigation & adaptation, we'll do more suffering.
- In mitigation and adaptation, there is a lot of "low-hanging fruit", but it's not enough. We need a price on GHG emissions to motivate reaching higher in the tree, as well as R&D to bring more fruit into reach.
- The United States must switch from laggard to leader and sooner rather than later – if the world is to act in time.

What climate is & what climate change means

Climate is the <u>pattern</u> of weather, meaning averages, extremes, timing, spatial distribution of...

- hot & cold
- cloudy & clear
- humid & dry
- drizzles & downpours
- · snowfall, snowpack, & snowmelt
- · zephyrs, blizzards, tornadoes, & typhoons

Climate change means <u>altered patterns</u>.

Global average temperature is just an <u>index</u> of the state of the global climate as expressed in these patterns. Small changes in the index \rightarrow big changes in the patterns.

What climate change puts at risk

Climate governs (so climate change affects)

- availability of water
- productivity of farms, forests, & fisheries
- prevalence of oppressive heat & humidity
- · formation & dispersion of air pollutants
- · geography of disease
- · damages from storms, floods, droughts, wildfires
- · property losses from sea-level rise
- · expenditures on engineered environments
- · distribution & abundance of species

We know why:

Human vs natural influences 1750-2005 (watts/m²)

<u>Human</u> emissions leading to increases in...

atmospheric carbon dioxide	+ 1.7
methane, nitrous oxide, CFCs	+ 1.0
net ozone (troposphere↑, stratosphere↓)	+ 0.3
absorptive particles (soot)	+ 0.3
reflective particles (sulfates, etc.)	- 0.7
indirect (cloud forming) effect of particles	- 0.7
<u>Human</u> land-use change increasing reflectivity	- 0.2
Natural changes in sunlight reaching Earth	+ 0.1

The warming influence of anthropogenic GHG and absorbing particles is ~30x the warming influence of the estimated change in input from the Sun.

IPCC AR4, WG1 SPM, 2007

The key greenhouse-gas increases were caused by human activities.

Compared to natural changes over the past 10,000 years, the spike in concentrations of CO_2 & CH_4 in the past 250 years is extraordinary.

We know humans are responsible for the CO₂ spike because fossil CO₂ lacks carbon-14, and the drop in atmospheric C-14 from the fossil-CO₂ additions is measurable.

IPCC AR4, WG1 SPM, 2007

Figure 2. Corn and Wheat yields versus temperature increase in the temperate zone averaged across 30 crop modeling studies. All studies assumed a positive change in precipitation. CO₂ direct effects were included in all studies.

Easterling and Apps, 2005

Facing the dangers from climate change...

- ...there are only three options:
- <u>Mitigation</u>, meaning measures to reduce the pace
 & magnitude of the changes in global climate being caused by human activities.
- Adaptation, meaning measures to reduce the adverse impacts on human well-being resulting from the changes in climate that do occur.
- Suffering the adverse impacts that are not avoided by either mitigation or adaptation.

Concerning the three options...

- We're already doing some of each.
- What's up for grabs is the future mix.
- Minimizing the amount of suffering in that mix can only be achieved by doing a lot of mitigation and a lot of adaptation.
 - Mitigation alone won't work because climate change is already occurring & can't be stopped quickly.
 - Adaptation alone won't work because adaptation gets costlier & less effective as climate change grows.
 - We need enough mitigation to avoid the unmanageable, enough adaptation to manage the unavoidable.

Mitigation possibilities include...

(CERTAINLY)

- Reduce emissions of greenhouse gases & soot from the energy sector
- Reduce deforestation; increase reforestation & afforestation
- Modify agricultural practices to reduce emissions of greenhouse gases & build up soil carbon

(POSSIBLY)

- "Scrub" greenhouse gases from the atmosphere technologically
- "Geo-engineering" to create cooling effects offsetting greenhouse heating

How much mitigation is needed, how soon?

- The UN Framework Convention on Climate Change of 1992 is "the law of the land" in 191 countries (including the United States).
- It calls for
 - "stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent <u>dangerous anthropogenic</u> <u>interference</u> with the climate system".
- But there was no formal consensus in 1992 as to what constitutes "dangerous anthropogenic interference" or what level of GHG concentrations will produce it.

How much, how soon? (continued)

- There's still no "official" consensus, but by any reasonable definition the <u>current</u> level of interference is dangerous.
- Can we avoid catastrophic interference?
 - T_{avg} would rise <u>0.6°C</u> more (to 1.4°C above preindustrial) even if concentrations were stabilized today.
 - Chance of a tipping point into catastrophic change grows rapidly for T_{avg} more than 2°C above pre-industrial (IPCC 2007, UNSEG 2007).
- Limiting ∆T_{avg} to ≤2°C is the most prudent target that still might be attainable; as a fallback, 2.5°C gives better odds of avoiding catastrophe than 3°C.

Key mitigation realities

- Human CO₂ emissions are the biggest piece of the problem (50% and growing)
 - 3/4 comes from burning coal, oil, & natural gas (80% of world energy)
 - 1/4 comes from deforestation & burning in the tropics
- While 60% of fossil CO₂ still came from industrialized countries in 2006, developing countries will dominate after 2015.
- Global energy system can't be changed quickly: \$15T is invested in it, w normal turnover ~40 yrs.
- Deforestation isn't easy to change either: forces driving it are deeply embedded in the economics of food, fuel, timber, trade, & development.

Leverage on fossil-fuel CO₂ emissions

The emissions arise from a 4-fold product...

 $C = P \times GDP/P \times E/GDP \times C/E$

where C = carbon content of emitted CO_2 (kilograms), and the four contributing factors are

P = population, persons

GDP / P = economic activity per person, \$/pers

E / GDP = energy intensity of economic activity, GJ/\$

C / E = carbon intensity of energy supply, kg/GJ

For example, in the year 2005, the world figures were... $6.4x10^9$ pers x \$6500/pers x 0.012 GJ/\$ x 15 kgC/GJ = $7.5x10^{12}$ kgC = 7.5 billion tonnes C

Options for reductions

Reduce growth of energy use by...

- · reducing population growth
- · reducing growth of GDP/person
- reducing E/GDP ratio by
 - increasing efficiency of conversion to end-use forms
 - increasing technical efficiency of energy end-use
 - changing mix of economic activities

Reduce CO2/E ratio by...

- substituting natural gas for oil & coal
- replacing fossil fuels with renewables
- replacing fossil fuels with nuclear energy
- capturing & sequestering CO₂ from fossil-fuel use

There is no panacea

All of the options have limitations & liabilities.

- limiting population: social & political sensitivities
- slowing GDP/person: economic aspirations
- expanding natural gas: resource size & distribution
- wind: intermittency, siting (NIMBY→BANANA)
- biofuels: net energy, land, food/ecosystem impacts
- photovoltaics: intermittency, cost, toxics
- nuclear fission: cost, waste, safety, proliferation
- nuclear fusion: doesn't work yet
- CO2 capture/sequestration: cost, scale, complexity
- · end-use efficiency: education, other barriers

Note: H₂ is not an energy source; it comes from other sources

Big problem & lack of panacea mean...

- We'll need a <u>portfolio</u> of approaches
 - Not just one or two, but many;
 - although not necessarily <u>everything</u> on the menu, as developing the better options to their full potential may allow foregoing some that prove very costly or risky.
- We need increased <u>research & development</u> on all of the options to try to
 - improve their performance,
 - lower their costs, and
 - reduce their adverse side effects.

so that the future menu can be better than today's.

Good & bad news re mitigation

- G: The cheapest, fastest, cleanest, surest source of emissions reductions is to <u>increase the efficiency of energy use</u> in buildings, industry, and transport.
- G: Many such approaches are "win-win": their co-benefits in saved energy, increased energy security, reduced conventional pollution, etc., are more than worth their costs.
- G: Some supply-side mitigation options (wind, some biofuels) are also "win-win", as are many adaptation options.
- B: The "win-win" approaches will not be enough. Adequate mitigation will require putting a price on emissions of GHG (via emissions tax or tradable emissions permits).

The challenge of scale

- Stabilizing at 500 ppmv CO₂-e means global CO₂ emissions must be ~7 GtC/yr below BAU in 2050.
- Avoiding 1 GtC/yr requires...
 - energy use in buildings cut 20-25% below BAU in 2050, or
 - fuel economy of 2 billion cars ~60 mpg instead of 30, or
 - carbon capture & storage for 800 1-GWe coal-burning power plants, <u>or</u>
 - 700 1-GWe nuclear plants replacing coal plants, or
 - 1 million 2-MWe(peak) wind turbines replacing coal power plants or
 - 2,000 1-GWe(peak) photovoltaic power plants replacing coal power plants

Socolow & Pacala, 2004

Some mitigation-policy realities

 In applying the costlier solutions, the industrialized nations must lead – going first, paying more of the up-front costs, offering assistance to developing countries.

This is a matter of historical responsibility, capacity, equity, and international law (the UNFCCC).

- Developing countries will need to be compensated for reducing/avoiding deforestation.
- Without a formal & binding global agreement on the allocation of emissions in the post-Kyoto period, the needed global reductions will not be achieved.
- The best basis for such an agreement in the short term is probably reductions in emission <u>intensity</u> (GHG/GDP); in the longer run, the only politically acceptable basis will be equal per-capita emissions rights.

Economics of mitigation

 Current global CO₂ emission rate from fossil fuels + deforestation ≈ 9-10 billion tonnes of C per year.

Paying \$100/tC to avoid half of it would be \$0.5 trillion/year, about 1% of the Global World Product (much of it a transfer, not money down a black hole).

- World spends 2.5% of GWP on defense; USA spends
 5% of GDP on defense, 2% on environmental protection.
- More sophisticated analyses of economic impact of mitigation to stabilize at 550 ppmv CO₂e → ~1% GWP loss (range 0.5-2%) in 2100 (Stern review); mid-range IPCC 2007 estimates are ~0.5% GWP loss in 2030.

Adaptation possibilities include...

- Changing cropping patterns
- Developing heat-, drought-, and salt-resistant crop varieties
- Strengthening public-health & environmentalengineering defenses against tropical diseases
- Building new water projects for flood control & drought management
- Building dikes and storm-surge barriers against sea-level rise
- Avoiding further development on flood plains & near sea level

Many of these are "win-win".

The most important next steps

- Accelerate "win-win" mitigation and adaptation measures; integrate adaptation with development
- Put a price on GHG emissions so marketplace can work to find cheapest reductions
- Pursue a new global framework for mitigation and adaptation in the post-2012 period
- Ramp up investments in energy-technology research, development, & demonstration by 2-5X
- Expand international cooperation on deploying advanced energy technologies

The United States must lead!

Some references

John P. Holdren, "The energy innovation imperative", *Innovations: Technology/ Globalization/Governance*, Vol. 1, No. 2, Spring 2006

http://bcsia.ksg.harvard.edu/BCSIA_content/documents/Innovations_T
he Imperative 6 06.pdf

UN Scientific Expert Group on Climate Change & Sustainable Development, Confronting Climate Change: Avoiding the Unmanageable and Managing the Unavoidable, United Nations Foundation, February 2007 http://www.unfoundation.org/SEG/

National Commission on Energy Policy, Energy Policy Recommendations to the President and the 110th Congress, April 2007 http://www.energycommission.org/

Intergovernmental Panel on Climate Change, Climate Change 2007 http://www.ipcc.ch/

KSG Belfer Center, *Energy Technology Innovation Policy website*: http://www.belfercenter.org/energy/

Woods Hole Research Center, *Presentations at the COP-13 Meeting in Bali*: http://www.whrc.org/BaliReports/index.htm