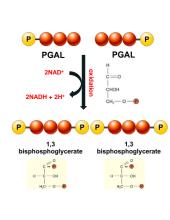
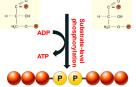


An example in Biology

P



•	Dihydroxyacetone phosphate (DHAP) is converted to its isomer, glyceraldehyde-3- phosphate
~	(G3P) a.k.a phosphoglycerate (PGAL)
•	Process: Isomerization


Next Review

5

с²⁰о³ нс-он

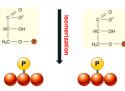
| н₂с—о-

3-phosphoglycerate 3-phosphoglycerate

нс — он

One of phosphates of BPG reacts with ADP to form ATP resulting
in 3-
phosphoglycerate
(3PG).
Process: Substrate-
level
phosphorylation

Next Review


3-phosphoglycerate 3-phosphoglycerate

2-phosphoglycerate

c=02

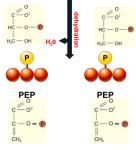
0-- 🕑

OH

> 3PG is rearranged to 2phosphoglycerate (2PG) > Process:

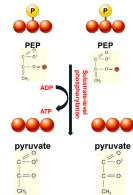
8

Isomerization.



2-phosphoglycerate

Next Review



9

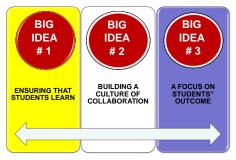
ONE molecule of water is removed, which results in formation of double bond. The product, phosphoenolpyruvate (PEP). **Process: Dehydration** (removal of water)

Next Review

Phosphate group of **PEP** molecules is transferred to ADP to yield ATP and pyruvate.

Process: Substratelevel phosphorylation.

Next Review


Answer the following questions

Energy investing phase Energy yielding phase Where reduced NAD⁺ is produced Name of enzymes at 1 & 3

	000000
	······································
	0.000 000 0
	0000 0000
0	0000 0000
	<u> </u>
	000
	000 000 000 000

Glycolysis in Lesson Study

THREE BIG IDEAS

4 CRITICAL QUESTIONS

- 1. What do we want our students to learn? (Focus)
- 2. How will we know they are learning? (Inquiry)
- 3. How will we respond when they don't learn? (Innovation)
- 4. How will we respond when they do learn? (Impact)

Source : www.allthingsplc.info

14

Learning Outcomes

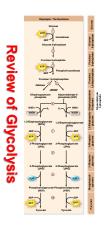
- By the end of the lesson, study should be able to:
- outline glycolysis to pyruvate with the yield of ATP and reduced NAD⁺

Question 1

What is do you we want our students to learn? (Focus)

17

Learning Objectives


- At the end of the tutorial lesson, 80% of the students are able to:
- state the definition of glycolysis and the location
 where it occurs in a eukaryotic cell
- state the 10 steps of reaction involved glycolyis
- identify correctly at least 4 types of chemical reactions during glycolysis
- state the reactions where hexokinase and phosphofructokinase are involved in glycolysis
- state the steps during glycolysis when energy is invested and steps where energy is yielded

Learning Objectives

- indicate the free energy level for each intermediate product during glycolysis
- show where ATP is invested & yielded and where NAD+ is reduced during glycolysis
- indicate the two phases in glycolysis
- justify the total ATP produced during glycolysis
- able to scor the lesson

Question 2

How do we know they are learning? (Inquiry)

BIG IDEA #1: Ensuring that Students Learn

Question 3

What will we respond when they don't learn? (Innovation)

BIG IDEA #2: Building a Culture of Collaboration **BIG IDEA #3**: A focus on Students' Outcome

Question 3

What will we respond when they don't learn? (Innovation)

24

Documentation and sharing

When Students' learn....

✓ Praise them

✓ Lesson Study Sharing session

Convention PLC (6-8 Sep 2016)

21