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Understanding the Role of P Values
and Hypothesis Tests in Clinical Research
Daniel B. Mark, MD, MPH; Kerry L. Lee, PhD; Frank E. Harrell Jr, PhD

P values (the product of significance tests) and hypothesis
testing methods are frequently misunderstood and often
misused in clinical research.1-3 Despite a large body of lit-

erature advising otherwise, reliance on these tools to characterize
and interpret scientific findings continues to increase.4 The Ameri-
can Statistical Association5 recently published a consensus white pa-
per attempting to promote a more limited, rational role for the P value
in science. That consensus statement was accompanied by 21 indi-
vidual commentaries from members of the panel, each adding his
or her own caveats to the discussion. Our justification for writing yet
another article on this surprisingly controversial subject lies in the
hope that, by taking a substantially different approach that is more
conceptual and less technical, we can enhance understanding of the
roles that P values and hypothesis tests are best suited to fill.

Science as Measurement: Understanding the
Nature of Clinical Evidence
When we do science, in most situations that means we measure
something.6-8 In the context of a therapeutic clinical trial, we can
think of the treatment as a metaphorical therapeutic force, an
“oomph” effect that pushes the intervention group away from the
control group, which creates distance or separation between the 2
groups with respect to outcomes of interest.9,10 An ineffective treat-

ment, therefore, has no oomph. To measure the consequences of
this therapeutic force, we use 2 complementary concepts, namely,
magnitude and precision. Outcomes measured in individual pa-
tients are used to estimate the magnitude or size of the treatment
effects produced, both for benefit and for harm as the circum-
stances dictate. The further the therapy in question “pushes” the
treatment group away from its peers in the control group, the larger
the average treatment effect is. How large a treatment effect has
to be to be consequential is a matter for clinical judgment. One of
the added complexities of clinical sciences is that, when a treat-
ment saves a life or prevents a stroke or heart attack, for example,
the prevented event is invisible clinically and can only be measured
indirectly using appropriate controls. We usually measure therapeu-
tic and other clinical effects in groups of patients using quantitative
constructs, such as odds ratios, hazard ratios, relative risk reduc-
tions, and survival or adverse event rate differences. Statisticians of-
ten use the term estimation when summarizing the measurement
of cohort-level clinical therapeutic effects.

The second key concept involves the idea of “precision,” the
amount of spread or variability in the data. At the level of individual
patients, precision can be understood in terms of measure-
remeasure variability of clinical variables. The tighter measure-
ments cluster around each other, the more precise (free from “ran-
dom” or patternless error) the measurement process is thought to
be. In much of clinical research, however, variability of the measure-

P values and hypothesis testing methods are frequently misused in clinical research. Much of
this misuse appears to be owing to the widespread, mistaken belief that they provide simple,
reliable, and objective triage tools for separating the true and important from the untrue or
unimportant. The primary focus in interpreting therapeutic clinical research data should be
on the treatment (“oomph”) effect, a metaphorical force that moves patients given an
effective treatment to a different clinical state relative to their control counterparts. This
effect is assessed using 2 complementary types of statistical measures calculated from the
data, namely, effect magnitude or size and precision of the effect size. In a randomized trial,
effect size is often summarized using constructs, such as odds ratios, hazard ratios, relative
risks, or adverse event rate differences. How large a treatment effect has to be to be
consequential is a matter for clinical judgment. The precision of the effect size (conceptually
related to the amount of spread in the data) is usually addressed with confidence intervals.
P values (significance tests) were first proposed as an informal heuristic to help assess how
“unexpected” the observed effect size was if the true state of nature was no effect or no
difference. Hypothesis testing was a modification of the significance test approach that
envisioned controlling the false-positive rate of study results over many (hypothetical)
repetitions of the experiment of interest. Both can be helpful but, by themselves, provide
only a tunnel vision perspective on study results that ignores the clinical effects the study
was conducted to measure.
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remeasure type has quantitatively much less influence on the pre-
cision of estimated outcomes than patient-to-patient variability. In
clinical research, when we refer to the precision of the effect size,
we are using a concept that blends the effects of uncertainty due
to patternless measurement errors with the uncertainty (often non-
random) resulting from variations among patients. The most com-
monly used precision assessment tools in clinical research are con-
fidence intervals. All other things being equal, studies with greater
precision in the estimation of a nonzero effect size are also more likely
to have a smaller P value, but the relationship between precision and
P values is indirect, as will be discussed below.

The treatment effects we report in clinical research thus re-
flect the admixture of at least 4 distinct but intertwined factors
(Figure 1A), including the true size of the treatment effect under ideal
circumstances (which is unknowable) and the following 3 sources
of uncertainty: (1) the selection (almost always nonrandom) of par-
ticipants into the trial from the universe of nominally eligible indi-
viduals, (2) the amount of measurement error in the effect size es-

timate (eg, the difference in event rates reported in a clinical trial by
the enrolling sites vs the clinical events committee), and (3) the vari-
ability in the potential for study participants to demonstrate a real
therapeutic effect (which we have termed variations in the thera-
peutic opportunity space (Figure 1B). Statistical analysis uses prob-
ability tools to attempt to untangle the true value from the mea-
surement error and the uncertainty created by study population
variability. However, the uncertainties involved in some parts of the
research process, particularly unmeasured factors exerting an im-
portant (and unsuspected) influence on the creation of the study
cohort or the effectiveness of the therapy delivered to patients (de-
picted by the cloud in Figure 1A), can influence whether a study shows
a significant treatment benefit or no treatment effect at all and are
not controlled with statistical or probability tools.

The recent Treatment of Preserved Cardiac Function Heart Fail-
ure With an Aldosterone Antagonist (TOPCAT) trial11 illustrates some
of the complex ways in which unquantifiable uncertainties (Figure 2)
can produce confusing, unexpected trial results. TOPCAT tested spi-

Figure 1. P Values and Hypothesis Tests in Context

Application of statistical analysisA
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(size of tail area of signal-
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Cloud of uncertainty (ambiguity) surrounding
(nonrandom) selection of participants into
clinical trials

See Figure 1B

True treatment effect Measurement errorPatient-to-patient variability (variation
in therapeutic opportunity space)
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Performance of therapeutic randomized
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(treatment signal)
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A, In a clinical trial, patients are
selected for enrollment (in an
undefined, nonrandom fashion),
randomized treatment strategies are
administered, and outcomes are
measured. From these patient-level
measurements, outcome constructs
are estimated that convey the
primary trial findings, typically in
terms of effect size magnitude
(treatment signal) and precision
(noise). P values (and hypothesis
tests) provide ancillary information
regarding how unexpected the study
results are if one assumes the null
hypothesis (no treatment effect) is
correct. B, “Therapeutic opportunity
space” is a metaphor we use to draw
attention to the different dimensions
of patient-to-patient variability that
collectively affect individual patient
responses to treatment and the result
on observed therapeutic effect size.
When the size of therapeutic
opportunity space is closely coupled
to overall patient risk level, our ability
to select the patients who will
demonstrate benefit from therapy is
often good. When this relationship
becomes weak or uncoupled, trials of
therapies may demonstrate
perplexing variability.
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ronolactone vs placebo in 3445 patients who have heart failure with
preserved systolic function. The trial was officially interpreted as
“negative” (hazard ratio, 0.89; 95% CI, 0.77-1.04), but prespecified
subgroup analyses revealed an 18% reduction in the primary end
point (composite that included cardiovascular mortality and hospi-
talization for heart failure) in the 1767 patients enrolled in the Ameri-
cas (ie, United States, Canada, Brazil, and Argentina) (hazard ratio,
0.82; 95% CI, 0.69-0.98) and no effect in the 1678 patients en-
rolled in Russia and Georgia (hazard ratio, 1.10; 95% CI, 0.79-1.51).12

In addition, patients who qualified for the study based on an el-
evated brain-type natriuretic peptide (BNP) level showed a larger
treatment benefit (hazard ratio, 0.65; 95% CI, 0.49-0.87), while the
individuals who qualified based on a prior heart failure hospitaliza-
tion showed no effect (hazard ratio, 1.01; 95% CI, 0.84-1.21). Fur-
ther analysis demonstrated the following 2 notable factors: (1) only
11% of the Russia and Georgia patients were enrolled in the BNP stra-
tum of the trial vs 45% of the Americas patients and (2) the Russia
and Georgia patients had a much lower event rate in the placebo arm
than the Americas patients (8% vs 32%). Therefore, an unexpect-
edly heterogeneous admixture of responders (meeting BNP entry
criteria, high placebo event rate, and mostly enrolled in the Ameri-
cas) and nonresponders (BNP status unknown, very low placebo
event rate, and predominantly enrolled in Russia and Georgia) into
TOPCAT is a plausible explanation for the overall negative results.
A much less likely and less plausible interpretation is that spirono-
lactone had no therapeutic benefit in the target population and that
the appearance of benefit in the BNP and regional subgroups was
“the play of chance.”

In clinical trials, investigators often rely on the convenient but
implausible assumption that they somehow have obtained a suffi-
ciently representative sample of some theoretical underlying popu-
lation of interest. In other words, investigators regard their experi-
mental data as if they were generated by some unseen random
sampling process, a “metaphorical lottery.”13 This assumption facili-
tates the expectation that statistical probability tools, along with the
correct form of analysis, are sufficient to understand the outcome
of the study and generalize usefully from it. One danger in this as-
sumption is that, when probability concepts (eg, the play of chance)
are used to explain unexpected or discordant trial results, further
research work on the treatment may be prematurely abandoned.

The P Value and the Hypothesis Test:
Using the Tail to Learn About the Dog?
The P Value or Significance Test
Technically, the “P value” is the product of a statistical procedure,
the “significance test.” In this discussion, we will use the 2 expres-
sions synonymously. Understanding the P value may be easier if we
start with the related idea used in engineering of a signal-to-noise
ratio.14,15 Statistics commonly uses the ratio between the effect size
of the treatment or exposure being studied (the “signal”) and the
precision in the estimation of that effect size (the “noise”) to create
useful statistical tools (eg, t score or z score). Summarizing the pre-
cision component using standardized precision units (termed stan-
dard errors), a treatment (oomph) effect that displaces the inter-
vention group by a distance equal to 2 or more standardized precision
units away from the control group would generally produce a “sta-
tistically significant” P value. Therefore, statistically significant in this
context simply means that the data had a sufficiently large signal-
to-noise ratio, which is a ratio between the effect size and the pre-
cision units of at least 2.

Moving from the ratio between the effect size and the preci-
sion units (test statistic) concept to the now familiar P value was
an innovation most closely associated with Sir Ronald Fisher, a
British scientist and one of the founders of modern statistics.16,17

As part of this innovation, Fisher used the idea of the null hypoth-
esis, a statistical straw man intended to reflect what the outcome
data would look like (how it would be distributed) if the treatment
or intervention had no actual effect. In a fully deterministic world
(no uncertainty), “no effect” would register as a 0 treatment effect
size, and the matter would end there. Because of the uncertainty
inherent in the natural world, there is almost always some nonzero
measured effect size even if the treatment has no biological
effects at all. Hence, the effect size needs to be “big enough” that
it reasonably exceeds what might be observed from the underly-
ing noise in the data. For Fisher, the P value reflected the degree to
which the observed data were incompatible with the hypothetical
null hypothesis. If the calculated P value was less than .05 (eg,
effect size estimate �2 precision units or standard errors away
from the position of the null hypothesis), Fisher proposed that
either (1) a rare event had occurred (ie, the appearance of a seem-
ingly meaningful pattern or causal relationship that was actually
due to purposeless variation in the data) or (2) the null hypothesis
(no effect and no difference) was false; in other words, the data
were (probably) showing a real meaningful pattern or causal rela-
tionship. Therefore, the Fisher P value is an “unexpectedness” test
in the sense that a small P value is an unexpected outcome if the
null hypothesis is correct (Table 1).

Fisher did not anticipate or endorse the enshrinement of the
P < .05 criterion, which he had proposed informally in early writ-
ings as an example rather than a standard. He also did not need or
postulate the idea of large numbers of identical (hypothetical) rep-
etitions of the experiment to interpret the P value.16,18 In fact, he did
not appear to give much consideration to interpretation of the ac-
tual P value number.19 Aside from recommending multiple repeti-
tions of each experiment, Fisher bypassed the ambiguity problem
in statistics by assuming that the sample data were randomly drawn
from a hypothetical infinite population.19

Figure 2. Two Main Types of Uncertainty in Science

Some relevant information
available to allow for evaluation
using probability mathematics

Uncertainty (a lack of information)

Quantifiable

No relevant information available
Cannot be expressed quantitatively

Unquantifiable (ambiguity)

Uncertainty, as it is encountered in science, reflects a lack of information and
can be usefully divided into 2 subtypes: quantifiable uncertainties and
unquantifiable uncertainties (ambiguity). Many times, our uncertainty involves
a situation where some information is available, enough that the uncertainty
can be quantified with probability mathematics. Significance testing and
hypothesis testing were derived to address this form of uncertainty. However,
another important form of uncertainty (ambiguity) is one where no relevant
past information is available, and thus this form of uncertainty cannot be
quantified.
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However, Fisher envisioned that experiments would be
repeated until the investigator was reasonably sure that he or she
had learned how to use the experimental intervention to get a pre-
dictable and desired result. One or 2 experiments usually could
not settle any complex scientific question. This insight is as rel-
evant to modern clinical trials as it was to Fisher’s small agricultural
experiments. In some areas of cardiovascular medicine, such as
secondary prevention trials with β-blockers, angiotensin-
converting enzyme inhibitors, antiplatelet agents, and statins, the
ability to perform multiple, reasonably similar trials has been piv-
otal in providing the consistent evidence necessary to achieve
widespread clinical acceptance and to support incorporation into
clinical guidelines. However, even repeated huge modern clinical
trials sometimes do not provide everything we need to know to
understand a therapy. One of the best examples involves the
thrombolytic therapy megatrials that laid the foundations of mod-
ern reperfusion therapy for acute myocardial infarction.20,21 Two
independent trials (Gruppo Italiano per lo Studio della Sopravvive-
nza nell’Infarto Miocardico [GISSI 2]22 with 12 490 patients and
the Third International Study of Infarct Survival [ISIS 3]20 with
41 299 patients) failed to find any of the expected clinical advan-
tages suggested by earlier mechanistic investigations for tissue
plasminogen activator over streptokinase.20 While many consid-
ered the matter settled based on this substantial body of trial evi-
dence, the unwillingness of some others to dismiss the cognitive
dissonance produced by this result led to a third megatrial (Global

Utilization of Streptokinase and Tissue Plasminogen Activator for
Occluded Coronary Arteries [GUSTO]21 with 41 021 patients),
which by modifying some aspects of the tissue plasminogen acti-
vator therapy from the earlier trials demonstrated the precise mor-
tality benefit of tissue plasminogen activator over streptokinase
predicted at the outset of the trial.23

The P value has inspired an impressive amount of passionate
editorializing in the scientific literature.5,24-35 Much of the negativ-
ity expressed about P values seems due to 2 problems. First, the
P value has nothing to say about the issue of how different the 2
cohorts are (the treatment oomph in the data).10,36 Fisher likely
would have argued that it is the responsibility of the investigator
to make that assessment and that it is outside the intended scope
of significance testing. Second, the P value is sample size
sensitive.37,38 With a large enough sample, any nonzero treatment
difference will yield a “significant” P value.39 Conversely, with small
samples, only very large treatment effects are likely to generate
significant P values.

If the P value has such important limitations, why is it still so in-
credibly popular with researchers? We believe that several factors
help explain this phenomenon. First, the P value appears to offer a
simple, objective triage tool: P < .05 means “pay attention,” while
P � .05 is “safe to ignore.”40 Second, as this triage use of the P value
illustrates, misinterpretation and misapplication of the P value are
common (Table 2).5,32 The most frequently offered statistical text-
book definition is not much help, namely, that the P value is the prob-
ability of observing a difference (effect size) as large as was mea-
sured or larger under the assumption that the null hypothesis (no
difference) is actually correct. Viewing the data from the perspec-
tive of P values is a form of statistical tunnel vision (Figure 3), focus-
ing on the tail (of the test statistic distribution where it crosses the

Table 1. Comparison of Tests by Fisher and Neyman-Pearson

Fisher “Unexpectedness” Test
(P Value Explained in 6 Steps)

Neyman-Pearson Hypothesis Test
(“Fluke Detection” in 7 Steps)

Formulate relevant null hypothesis
to be used as a straw man (eg, no
treatment effect, hazard ratio of 1).

Formulate straw man null hypothesis
plus alternate hypothesis (usually
anything different from the null).

Calculate the test statistic, a measure
of the distance between the observed
experimental results and the
postulated null hypothesis results
(roughly the “signal” of interest)
adjusted for the amount of variation
or uncertainty (the “noise” in the
data) in the experimental results.

Choose desired α level (probability
of false-positive result in testing the
null hypothesis). This is not the
P value!

Use an appropriate mathematical or
statistical model for interpreting the
test statistic (eg, normal distribution).

Use an appropriate mathematical or
statistical model for interpreting the
test statistic (eg, normal
distribution).

Use the statistical model and
experimental test statistic to gauge
how unusual or unexpected the
experimental results would be if the
null hypothesis was true, typically
expressed as P value (also called
significance test but perhaps clearer
if renamed unexpectedness test).

Use the statistical model (including
Neyman-Pearson calipers set at fixed
detection width based on α level
chosen) and calculated test statistic
to test the null hypothesis based on
the distance the observed
experimental results are from the
hypothetical null (signal), adjusting
for data variability (noise).

Assuming the null hypothesis was true
(the straw man), recognize that the
experimental results (test statistics)
that correspond with small P values
signify either something unexpected
has happened or the null hypothesis is
not true or not supported by the data.

If within fixed Neyman-Pearson data
calipers (defining the null
hypothesis), do not reject the null
hypothesis.

Repeat the experiment multiple times
to decide which of those 2 options to
believe.

If the experimental results are
outside (beyond) fixed
Neyman-Pearson data calipers,
reject the null hypothesis.
Imagine repeating the identical (or
almost identical) experiment a large
number of times (possibly
approaching infinite repetitions).

Table 2. Common Misconceptions About P Value

Misconception Comment
P value equals the
probability that the
null hypothesis is
true.

P value is computed by assuming the null hypothesis
is true.

P value equals the
probability that the
observed effect is
due to “the play of
chance.”

P value is defined as the probability of a difference
(effect) as large as that observed or larger if the null
hypothesis is true. Even if the difference observed is
consistent with a simple chance mechanism, other
more complex explanations are also possible, and
nothing in P value calculation allows one to conclude
that this is the best or most likely explanation for the
observed differences.

P value ≤.05 means
the null hypothesis
is false.
P value >.05 means
the null hypothesis
is true.

P value is computed assuming the null hypothesis is
true. It is not the probability that the null hypothesis
is either true or false.

P value ≤.05
identifies a clinically
or scientifically
important difference
(effect).
P value >.05 rules
out a clinically or
scientifically
important difference
(effect).

Clinical or scientific importance of study results is
a judgment integrating multiple elements, including
effect size (expected and observed), precision of
estimate of effect size, and knowledge of prior
relevant research. At best, P value has a minor role
in shaping this judgment.

A small P value
indicates study
results are reliable
and likely to
replicate.

P value provides no information about whether a given
study result can be reproduced in a second, replication
experiment. There are many other factors that must be
considered in judging the reliability of study results.
Understanding what works in medicine is a process
and not the product of any single experiment.
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null point) and ignoring the dog (the effect size the experiment was
conducted to measure).

The hazard of this practice is well illustrated by the Surgical Treat-
ment for Ischemic Heart Failure (STICH) trial,42 which randomized
1212 patients with an ejection fraction of 35% or less and coronary
artery disease amenable to coronary artery bypass grafting (CABG)
to CABG or medical therapy alone. With a median follow-up of 56
months, the CABG-medicine treatment effect on all-cause mortal-
ity (the primary end point) was a hazard ratio of 0.86 with P = .12,
and the trial was interpreted as negative. After an additional 5 years
of follow-up, the CABG effect size for all-cause mortality was un-
changed (0.84 vs 0.86); however, the precision of the estimate was
improved (95% CI, 0.73-0.97 vs 0.72-1.04), and the P value was now
significant (P = .02), a “positive trial.”43 All that really changed be-
tween the first (negative trial) report and the second (positive trial)
was the position of the upper tail of the test statistic relative to the

null position. Such overreliance on P values (the tails) relative to
the oomph effect of treatment (the dog), is common4 but makes
no sense.

The Hypothesis Test
Jerzy Neyman, a Polish mathematician and founder of the Ameri-
can school of mathematical statistics, working in collaboration
with the British statistician Egon Pearson, proposed “hypothesis
testing” to “improve” some of the mathematically fuzzy parts
of the work by Fisher, particularly its informal (heuristic)
interpretation.44 Neyman and Pearson argued that the null
hypothesis required an alternative hypothesis, and together they
could be used to define the now familiar type I and type II errors
that may occur in testing a hypothesis.16 It is important to note
that hypothesis here refers to a statistical, not a scientific, one.
Fisher believed that the P value or significance test was most use-
ful to help generalize from experiments to the world outside his
experiments (the process of inductive inference). Neyman explic-
itly rejected that idea. Instead, he proposed that the hypothesis
test could serve as a guide to what he called “inductive behavior,”
which in the context of an experiment was to either accept the
null hypothesis or the alternative hypothesis (essentially anything
that was not the null hypothesis). Neyman did not care what the
scientist thought about the evidence and instead believed that the
experiment should tell the scientist what to do, an idea Fisher
rejected as “unscientific.” The decision by Neyman to use Fisher’s
P < .05 heuristic for the default type I error rate (α level) has prob-
ably led to much added confusion.18

To explain what the hypothesis test and the associated error
rates meant, Neyman postulated that an experiment would un-
dergo a large series of identical or almost identical hypothetical rep-
etitions (large is undefined here but may approach infinity).9,19 This
device (imagining the results of a “long run” of hypothetical experi-
mental repetitions) is not controversial in mathematics but has
caused major headaches for scientists, who have great difficulty un-
derstanding what it actually means in empirical terms.45 Neyman and
Pearson never actually specified what constituted an experimental
repetition in this context.46 Two key factors spring from the hypo-
thetical long-run repetitions concept. First, nothing could be con-
cluded about whether the experiment the investigator actually did
was correct or not.18 The hypothesis test procedure had nothing to
say about that or about the evidence in the data set. Second, the hy-
pothesis testing procedure was meant to ensure that, in the long run,
the probability (frequency) of errors would be controlled at an ac-
ceptable level. That was all that was possible, Neyman thought. Yet,
the long run was all hypothetical. Goodman47 has likened this for-
mulation to a justice system that does not care about the correct-
ness of verdicts (guilty or innocent) for individual defendants and
instead is completely focused on controlling the long-run propor-
tion of mistaken verdicts.

To understand Neyman’s notion of the type I (false-positive) er-
ror rate, one can imagine a set of data calipers, like an electrocar-
diogram caliper, designed to measure the distance the observed data
have been pushed away from the hypothetical null hypothesis data
position by the therapy under study (which so far is similar to Fish-
er’s approach [Table 1]). However, Fisher’s data calipers were fully
adjustable, capable of measuring distances corresponding to P val-
ues between 0 and 1, whereas Neyman conceived of calipers that

Figure 3. Comparison of the “P Value View” of Data With the “Effect Size
or Precision View”
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The results are shown from a hypothetical study comparing the effect of a
treatment in men vs women. The y-axis shows the full range of possible P values
(0 to 1.0), and the x-axis shows relative risk (RR) (values <1 indicate better
outcomes with treatment relative to control). This type of display is called a
P value function (and can also be shown as a confidence interval function by
changing the y-axis to 1 minus the P value). It is explained in greater detail in the
Epidemiology textbook by Rothman.41 Typically, we are most interested in the
P values calculated against the null hypothesis (in this case represented by an
RR of 1, shown as a solid vertical line). Three key concepts are shown. First, the
P value view of the data, shown in the inset on the right, focuses completely on
where the tails of the P value functions cross the null position (RR of 1). The
P value view does not include any direct assessment of the size of the treatment
effect produced. Second, even within the 95% CIs, the possible values of RR are
not all equally likely. The values most compatible with the data collected are
those at or close to the point estimates of effect size. Third, the narrowness or
wideness of the P value function, reflecting precision of the estimate of effect
size, can perversely affect interpretation using P values. In this example, it is
clear that the effect sizes are essentially identical, but there is less precision in
the estimate for the women, leading to a nonsignificant result. A P value–centric
interpretation might lead to the misguided conclusion that the therapy works
in men but not in women. The figure was generated using a program created by
Kenneth Rothman, DMD, DrPH (http://www.krothman.org/episheet.xls) and
used with his permission.
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were preset in the design phase of the research to the desired width,
which turned out to be almost universally at an α level (false-
positive rate) of .05. A hypothesis test, then, uses this fixed-width
caliper to judge the distance between the observed treatment ef-
fect and the null hypothesis (ie, where the results are vs where they
would be expected to be if the therapy had no effect). If the treat-
ment effect size is sufficiently far away—outside the prongs of the
caliper—one can reject the null hypothesis; if not, one cannot reject
the null hypothesis. Therefore, from a hypothesis testing point of
view, P � .04 means reject the null hypothesis, whereas P � .06
means do not reject the null hypothesis. This seemingly arbitrary in-
flexibility of the hypothesis test tool, and specifically its inability to
appreciate degrees of incompatibility with the null hypothesis, has
caused much confusion and led some to view the hypothesis test
as a sort of statistical fluke detector (Table 1).

Because of the strong influence of the Neyman-Pearson
hypothesis testing concepts in science, clinicians have come to
accept, often without objection, the idea that if one performs 20
significance or hypothesis tests with the nominal threshold for
“significance” of .05, then on average one can expect at least 1 to
be a false positive (with no way to tell which one is the bad apple).
When applied abstractly to games of chance, such concepts—
which are based on simple probability mathematics and assump-
tions about independent equally likely outcomes—may be a rea-
sonable approximation. Clinical experiments are vastly more
complex than games of chance, however, and do not conform to
the assumptions required for those false-positive error rate calcu-
lations. Doing many statistical tests undoubtedly raises the likeli-
hood of 1 or more “false-positive” results. However, the probability
of that occurrence depends on a host of factors and is almost
never uniform across the tests performed (thus violating a key
assumption of the 1 in 20 error rate rule). Therefore, invoking the
play of chance as a cause for some unexpected outcome in clinical
research is never the best first explanation to consider, although it
may be what one is left with when all reasonable, and some unrea-
sonable, possibilities have been excluded. That said, if statistical
tests are used as a kind of data beachcombing tool unguided by
clear (and ideally prospective) specification of what findings are
expected and why, much that is nonsense will be “discovered” and
added to the peer-reviewed literature. Concern about such “data
dredging” has promoted requirements for prespecification as a
part of the triage use of P values referred to earlier. However, pre-
specification without a strong, plausible underlying rationale is
simply guessing and does not enhance the validity or credibility
of findings.

The Modern Hybrid Null Hypothesis Significance
Testing Procedure
In recent years, some researchers have begun to use both the
Fisher P value or significance test and the Neyman-Pearson
hypothesis test together, despite the very different intentions of
the originators, as discussed above.48 The most common hybrid
procedure is to use the Neyman-Pearson structure to help design
a clinical trial (including setting the desired type I error rate and
rules for interim data and safety monitoring board looks at the
outcome data, estimating the needed sample size and the
expected power) but then to use the Fisher P value in the analysis
phase to test the null hypothesis.18,49 The main problem this
hybrid approach creates is that it encourages the unwary to con-
flate the idea of the α level or type I error (conventionally set at
.05) with the observed P value (which is almost always interpreted
using a threshold benchmark of .05 to denote significance). View-
ing the P value as a roving type I error probability for each com-
pleted study amplifies its apparent importance and spawns mis-
guided arguments about the need to adjust the observed P value
for “multiplicity” or “multiple comparisons,” the total number of
statistical tests performed on the data.50,51 Once it is understood
that the P value is not the probability that the researchers have
made a type I error, then adjusting the P value for the number of
significance tests performed loses its rationale.52

Conclusions
In this article, we have presented a view of clinical research cen-
tered on measuring and understanding something of clinical or
scientific importance, the treatment oomph effect of interest.
Figuring out how best to conceptualize and measure clinical
“effects,” as well as finding the most insightful ways to analyze
and interpret the data using modern statistical tools, is difficult,
complex, and often messy. The primary goal of the research
process is not to generate P values or perform hypothesis
tests. Those tools, like the many others in the statistical toolbox,
can be helpful but must be applied thoughtfully and with full
appreciation for their assumptions and limitations. Unfortunately,
no statistical tool or technique can guarantee access to the short-
est path to the truth. Repeated experiments, as Fisher recognized
years ago, may be the best way to tame much of the messiness. If
that is not feasible, and it often is not, medicine can still accom-
plish much by making pragmatic, well-reasoned use of the evi-
dence it does have.
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