

Prototyping
Augmented Reality

Prototyping
Augmented Reality
T o n y M u l l e n

A c q u i s i t i o n s E d i t o r : Mariann Barsolo

D e v e l o p m e n t E d i t o r : Gary Schwartz

Te c h n i c a l E d i t o r : John Nyquist

P r o d u c t i o n E d i t o r : Dassi Zeidel

C o p y E d i t o r : Liz Welch

E d i t o r i a l M a n a g e r : Pete Gaughan

P r o d u c t i o n M a n a g e r : Tim Tate

V i c e P r e s i d e n t a n d E x e c u t i v e G r o u p P u b l i s h e r : Richard Swadley

V i c e P r e s i d e n t a n d P u b l i s h e r : Neil Edde

B o o k D e s i g n e r : Caryl Gorska

C o m p o s i t o r : Chris Gillespie, Happenstance Type-O-Rama

P r o o f r e a d e r : Candace English

I n d e x e r : Ted Laux

P r o j e c t C o o r d i n a t o r, C o v e r : Katherine Crocker

C o v e r D e s i g n e r : Ryan Sneed

C o v e r I m a g e : Tony Mullen

Copyright © 2011 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-03663-1

ISBN: 978-1-118-18005-1 (ebk.)

ISBN: 978-1-118-18007-5 (ebk.)

ISBN: 978-1-118-18006-8 (ebk.)

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic,

mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United

States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appro-

priate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-

8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111

River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect to the

accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation war-

ranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional materials. The advice

and strategies contained herein may not be suitable for every situation. This work is sold with the understanding that the publisher

is not engaged in rendering legal, accounting, or other professional services. If professional assistance is required, the services of a

competent professional person should be sought. Neither the publisher nor the author shall be liable for damages arising herefrom.

The fact that an organization or Web site is referred to in this work as a citation and/or a potential source of further information

does not mean that the author or the publisher endorses the information the organization or Web site may provide or recommen-

dations it may make. Further, readers should be aware that Internet Web sites listed in this work may have changed or disappeared

between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support, please contact our Customer Care

Department within the U.S. at (877) 762-2974, outside the U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Not all content that is available in

standard print versions of this book may appear or be packaged in all book formats. If you have purchased a version of this book

that did not include media that is referenced by or accompanies a standard print version, you may request this media by visiting

http://booksupport.wiley.com. For more information about Wiley products, visit us at www.wiley.com.

Library of Congress Control Number: 2011937513

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered trademarks of John Wiley & Sons, Inc.

and/or its affiliates, in the United States and other countries, and may not be used without written permission. All other trade-

marks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned

in this book.

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

Dear Reader,

Thank you for choosing Prototyping Augmented Reality. This book is part of a family

of premium-quality Sybex books, all of which are written by outstanding authors who

combine practical experience with a gift for teaching.

Sybex was founded in 1976. More than 30 years later, we’re still committed to produc-

ing consistently exceptional books. With each of our titles, we’re working hard to set a

new standard for the industry. From the paper we print on, to the authors we work with,

our goal is to bring you the best books available.

I hope you see all that reflected in these pages. I’d be very interested to hear your

comments and get your feedback on how we’re doing. Feel free to let me know what you

think about this or any other Sybex book by sending me an email at nedde@wiley.com. If

you think you’ve found a technical error in this book, please visit http://sybex.custhelp

.com. Customer feedback is critical to our efforts at Sybex.

	 Best regards,

	

	 Neil Edde

	 Vice President and Publisher

	 Sybex, an Imprint of Wiley

mailto:nedde@wiley.com
http://sybex.custhelp.com
http://sybex.custhelp.com

For my family

I’d like to thank  Acquisitions Editor Mariann Barsolo, Editorial

Manager Pete Gaughan, Development Editor Gary Schwartz, Technical Editor

John Nyquist, Editorial Assistants Jenni Housh and Connor O’Brien, Production

Editor Dassi Zeidel, Copyeditor Liz Welch, and everyone else at Sybex who contrib-

uted to putting this book together. I’m also very grateful to the dedicated software

developers who contributed their time and effort to create the open source software

used in this book, including the ARToolKit, NyARToolkit, Processing, Blender,

and JMonkeyEngine developers. I want to single out Adam Clarkson, creator of

ARMonkeyKit, in particular for his help with the content of this book.

Acknowledgments

Tony Mullen, PhD,  has a broad background in CG and programming.

He teaches at Tsuda College in Tokyo, Japan, where his courses include Python program-

ming as well as Blender modeling and animation. He has been a cartoonist and an illus-

trator; his screen credits include writer, codirector, and lead animator on several short

films, including the award-winning live-action/stop-motion film “Gustav Braustache

and the Auto-Debilitator” (2007). He is the author of Introducing Character Animation

with Blender; 3D for iPhone Apps with Blender and SIO2; Mastering Blender, Bounce,

Tumble, and Splash!: Simulating the Physical World with Blender 3D, and Blender Studio

Projects: Digital Movie-Making, all from Sybex.

About the Author

John R. Nyquist  is a Blender Foundation Certified Trainer (BFCT) and

has created seven Blender and two ActionScript training videos for CartoonSmart.com,

as well as 60 episodes of Bits of Blender. He has worked professionally using Blender/

Python, Java, ActionScript, C++, C#, and Lingo for interactive multimedia. John has

coauthored two books on Director/Lingo and has served as technical editor for books

on Java, Director, and Lingo.

About the Technical Editor

CO NTE NT S at a glance

Introduction	 ■	 xix

Chapter 1	 ■	 Getting Started with Augmented Reality   1

Chapter 2	 ■	 Introduction to Processing   13

Chapter 3	 ■	 Blender Modeling and Texturing Basics   33

Chapter 4	 ■	 Creating a Low-Poly Animated Character   69

Chapter 5	 ■	 3D Programming in Processing   87

Chapter 6	 ■	 Augmented Reality with Processing   103

Chapter 7	 ■	 Interacting with the Physical World   121

Chapter 8	 ■	 Browser-Based AR with ActionScript and FLARManager   135

Chapter 9	 ■	 Prototyping AR with jMonkeyEngine   165

Chapter 10	 ■	 Setting Up NyARToolkit for Android   189

Appendix A	 ■	 From Blender 2.49 to Blender 2.58    207

Appendix B	 ■	 File Formats and Exporting    221

Index	 ■	 233

Contents

Introduction	 xix

Chapter 1  ■  Getting Started with
Augmented Reality	 1

What Is Augmented Reality?	 2

Tools and Technologies	 6

AR Necessities	 7

Chapter 2  ■  Introduction to Processing	 13

The Processing Programming Environment	 14

Drawing in Processing	 19

Working with Classes	 25

Chapter 3  ■  Blender Modeling and
Texturing Basics	 33

Modeling with Blender	 34

Baking a Smooth AO Texture	 54

Creating a Finished Texture with GIMP	 59

Chapter 4  ■  Creating a Low-Poly Animated
Character	 69

Texturing Your Low-Poly Alien	 70

Rigging the Model	 75

Keying a Simple Walk Cycle	 79

Chapter 5  ■  3D Programming in Processing	 87

The P3D and OpenGL Environments	 88

Working with OBJ files	 92

Simple Animation with OBJ Arrays	 98

Chapter 6  ■  Augmented Reality with Processing	 103

The NyAR4psg Library	 104

Digging into the Sample Code	 107

Controlling Transformations with
Multiple Markers	 112

Contents
The Goals of This Book	 xxi
Who Should Buy This Book	 xxii
What’s Inside?	xxiii
Online Companion Files	 xxiv
How to Contact the Author	 xxiv

C hap

Getting Started with
Augmented Reality	 1

What Is Augmented Reality?	 2
Tools and Technologies	 6
AR Necessities	 7

C hap

Introduction to Processing	13

	 Chapter 7  ■  Interacting with the Physical World	 121

Physical Computing with Arduino	 122

Sensors and Circuits	 125

Communicating Between Arduino
and Processing	 127

	 Chapter 8  ■  Browser-Based AR with
ActionScript and FLARManager	 135

The FLARManager AR Toolset for
ActionScript	 136

Getting FLARManager Up and Running	 137

Creating Your Own Projects	 147

	 Chapter 9  ■  Prototyping AR with
jMonkeyEngine	 165

Introducing JMonkeyEngine and
ARMonkeyKit	 166

Exploring ARMonkeyKit	 174

Thoughts from the Developer	 184

	 Chapter 10  ■  Setting Up NyARToolkit
 for Android	 189

Android and the Android SDK	 190

NyARToolkit for Android	 196

Going Further with Android	 202

	 Appendix A  ■  From Blender 2.49
 to Blender 2.58	 207

Basics and Views	 208

Mesh Modeling	 211

Texturing, Baking, and Materials	 213

Rigging and Animation	 216

	 Appendix B  ■  File Formats and Exporting	 221

Development Environments and
File Formats	 222

Exporting from Blender	 223

	 Index	 233

Introduction
Augmented Reality (AR)  is a term used for a wide range of

related technologies aimed at integrating virtual content and data with live, real-time

media. The idea of AR is to mingle what is not really there with what is there as seam-

lessly as possible, and to present users with an enhanced, or augmented, display of the

world around them. The nature of the augmentation could be anything from a textual

display of data overlaid on real scenes or objects to complete, interactive 3D graphical

scenes integrated into real ones.

AR depends crucially on hardware that is able to capture information about the real

world, such as video, position data, orientation data, and potentially other forms of data,

and also able to play back a display that mixes live media with virtual content in a way

that is meaningful and useful to users.

With the recent ubiquity of smartphones, just about everybody now has in their pock-

ets hardware with exciting AR potential. This has contributed to an explosion of interest

in AR development, both for mobile platforms and in general. With the widespread use

of webcams on laptops and desktop computers, browser-based AR for marketing and cre-

ative purposes has begun to boom. Inexpensive cameras and displays also make it pos-

sible to set up on-site AR installations cheaply and easily, as LEGO did with their brilliant

AR-based marketing campaign in which AR stations were set up at toy stores to enable

customers to hold a box up to the camera and see the completed 3D model in the display,

fully integrated into the live camera video.

There are several major varieties of AR, and each is a broad topic in itself. Currently

available books about mobile AR mainly focus on AR that uses location (GPS) and orien-

tation (accelerometer) data from a mobile device to annotate or integrate content into live

scenery. These applications know what your smartphone camera is viewing because they

know where you’re standing and which direction your smartphone is pointing. Based on

this data, annotations that have been uploaded, either by a centralized service or by other

users, can be overlaid on the scene in your camera.

Another, but by no means mutually exclusive, approach to AR is to use the actual

image content captured by a camera to determine what is being viewed. This technology

is known as computer vision, for obvious reasons. The computer processes each pixel of

xx  ■   Introduction

each video frame, evaluating each pixel’s relationship with neighboring pixels in both time

and space, and identifies patterns. Among other things, the current state of the art of com-

puter vision includes accurate algorithms for face recognition, identifying moving objects

in videos, and the ability to recognize familiar markers, or specific visual patterns that have

been identified in advance to the algorithm, in a very robust way.

Computer vision–based AR can be used in both mobile contexts and non-mobile con-

texts. It can be used to enhance location- and orientation-based AR methods, and it can

also be used to create AR applications that are not tied in any way to a specific location.

The computer-vision algorithm can be made to recognize patterns on packaging, products,

clothing, artwork, or in any number of other contexts.

This book is concerned with tools and technologies used for computer vision–based

AR. Aside from its potential use in marketing campaigns and the like, computer vision–

based AR is a lot of fun and, in my opinion, a bit magical. This aspect was what motivated

me to begin investigating the subject and ultimately to write this book. I think that the

creative potential of this technology has only begun to be explored, and I am eager to see

people take it further. This is also why this book is geared less toward professional devel-

opers and more toward creative people who want to have fun exploring the possibilities

before getting too bogged down in the technical demands of creating stable, ready-to-

deploy software.

To these ends, I’ve tried to keep the technologies discussed in this book as accessible

as possible. This is why a large portion of the book is devoted to the Processing program-

ming environment. Processing is perhaps the most accessible programming environment

around for creating visual, interactive programs. Processing is open source and cross-

platform, and was developed specifically with the needs of artists and creative people in

mind, people who are not necessarily highly skilled programmers. Processing has a com-

paratively gentle learning curve, but is remarkably powerful in spite of its simplicity. In

addition to learning the basics of programming in Processing, you’ll learn how to create

animated 3D content using the open source 3D application Blender. This portion of the

book is entirely optional; 3D content files are provided for download if you want to follow

the other chapters without making your own.

In the interest of keeping things as accessible as possible, I’ve also stuck with AR tech-

nologies that use markers. Markers are printable patterns that provide AR systems with

easy-to-recognize reference points. Because of the need for real-world markers, marker-

based AR has some definite limitations. The technology exists to do some very impressive

Introduction  ■   xxi

things with markerless AR. Markerless AR systems are able to create AR environments

that reference other recognizable features of a video stream. For example, a markerless AR

system might be made to recognize human faces or other objects, without the need for an

explicitly printed marker.

The problem is that, at present, the available markerless AR technologies of which I am

aware are not very accessible to nonprogrammers. By contrast, there is a variety of marker-

based libraries that I think are comparatively easy to get running. This will certainly

change in the future.

The Goals of This Book
This book is intended to give a broad introduction to some of the most accessible and

usable tools for computer vision– and marker-based AR content creation. In doing so,

a certain amount of programming is unavoidable, but programming is not the primary

objective of this book. This book will show you how to get started using a wide variety of

tools, each of which has different functions and benefits. Although there are overlaps, each

of the tools depends on a different set of programming skills. To get the most out of these

tools, you will need to pick up the ball in going further in your study of the programming

environments you want to use. Whole shelves exist on the subject of 3D programming in

Java or ActionScript, for example, and this book makes no attempt to replace these.

Rather, this book will give you the opportunity to get AR applications up and running

on your computer (and potentially on your Android mobile device) and to get the basics of

how to go about creating your own content. Depending on the technology, it may be pos-

sible to create an interactive AR application yourself quickly. Some of the chapters involve

more hands-on programming activities, whereas others provide more cursory glimpses at

the technology. You won’t need programming skills to follow the content of the book, but

you will need to pick them up if you want to go further with some of the topics.

Ultimately, the goal of this book is to inspire you to do just that. This book should give

you a sense of the possibilities already available to you for creating AR applications in a

variety of settings. Perhaps you’ll be impressed by the possibilities of physical computing–

based AR, and you’ll go further in studying the Arduino and Processing environments.

Maybe you’ll get a great idea for a Flash-based AR game to create, and you’ll throw yourself

into learning ActionScript. Or maybe this book will inspire you to dive into 3D develop-

ment in Android. Whatever the case may be, this book is intended to be a first step, not a

last step.

xxii  ■   Introduction

Who Should Buy This Book
The title of this book is Prototyping Augmented Reality, and the focus of the book is not

on creating polished, deployment-ready software, but rather on experimenting with and

demonstrating AR applications, hopefully in as quick and simple a manner as possible.

For this reason, the main target readership for this book is people who are creative and

eager to explore the possibilities of AR for making fun, interactive applications with a

sense of merging the real with the virtual. The book is written deliberately to avoid making

assumptions of specific programming experience. Even if you’ve done no programming at

all, you should be able to follow along and do some interesting things.

This does not mean that there’s nothing here for professional, experienced developers.

The value for more experienced developers will lie mostly in being pointed to interesting

technologies and libraries. For people with programming chops in Java or ActionScript,

this book should serve as a quick springboard into the world of AR. You won’t learn much

programming you don’t already know, but you’ll find out exactly where to start hacking

to bring your own AR ideas to life. The breadth of the topics covered here also makes it

likely that, even if you’re a fairly experienced developer, there is something new within that

might give you some interesting ideas.

Although I try to avoid assuming programming experience in describing this book,

the fact is that programming is central to everything this book is about. Any program-

ming experience you have, even in a completely different language, will be useful.

Understanding object-oriented programming concepts will make a lot of things in the

book more self-evident, and I do take a basic level of programming literacy for granted.

If the idea of a “for” loop mystifies you, much of what you’ll find in these pages will be

pretty cryptic.

For some of the technologies discussed in this book, programming skills are an absolute

must in going further to create your own content. You simply cannot develop AR applica-

tions on your own for Android without an understanding of Java, for example. The book’s

handling of those topics is intended as a gentle introduction to the AR potential of the

environment, not as an in-depth programming course.

In short, this book is intended for anybody with an interest in computer vision– and

marker-based AR who isn’t sure where to start exploring the subject. What you get out of

the book will depend a lot on what you bring to it.

Introduction  ■   xxiii

What’s Inside?
Here is a glance at what’s in each chapter:

Chapter 1: Getting Started with Augmented Reality  ​This chapter provides an overview of

augmented reality and broadly introduces the libraries that the rest of the book covers in

more depth. The topic of marker creation, which is relevant to all the other chapters, is

covered here.

Chapter 2: Introduction to Processing  ​This chapter provides a gentle introduction to the

Processing programming environment, suitable for nonprogrammers. The basics of pro-

gramming in Processing are covered with examples using 2D graphics.

Chapter 3: Blender Modeling and Texturing Basics  ​This chapter gives a brief introduction to

modeling and texturing using the open source 3D modeling and animation software called

Blender.

Chapter 4: Creating a Low-Poly Animated Character  ​This chapter picks up where Chapter 3

leaves off in creating a textured, low-poly animated character for use in AR applications.

Chapter 5: 3D Programming in Processing  ​This chapter returns to Processing to introduce

3D programming and show what to do with an animated 3D character similar to the one

you learned to create in Chapter 4.

Chapter 6: Augmented Reality with Processing  ​This chapter carries what you’ve learned in

the previous chapters into the world of AR by introducing special third-party libraries for

Processing that enable AR.

Chapter 7: Interacting with the Physical World  ​This chapter introduces the Arduino micro-

controller and programming environment for physical computing. You’ll learn to create an

AR application that incorporates data from the real world via channels other than video only.

Chapter 8: Browser-Based AR with ActionScript and FLARManager  ​This chapter shows you

how to put your AR ideas online by using the FLARManager toolset for creating Flash-

based browser AR applications.

Chapter 9: Prototyping AR with jMonkeyEngine  ​This chapter introduces ARMonkeyKit, a

powerful tool under development for rapid prototyping of 3D AR applications based on the

open source jMonkeyEngine.

xxiv  ■   Introduction

Chapter 10: Setting Up NyARToolKit for Android  ​This chapter shows you how to install the

NyARToolKit development environment for Android and run AR applications on your

Android-based mobile device.

Appendix A: From Blender 2.49 to Blender 2.58  ​This appendix shows you how to translate

the modeling, texturing, and animation concepts you learned in Chapters 3 and 4 from

Blender 2.49 into Blender 2.58.

Appendix B: File Formats and Exporting  ​This appendix provides a concise digest of 3D file

formats used throughout the book and how you can export your content to the appropriate

format for the environment with which you want to work.

Online Companion Files
You’ll find the project files you need to follow the chapters on the book’s companion

website, www.sybex.com/go/prototypingar. Where licenses allow, software described in

the chapters will also be available as a download from the book’s website in case the corre-

sponding version later becomes unavailable elsewhere.

How to Contact the Author
I welcome feedback from you about this book or about books you’d like to see from me in

the future. You can reach me by writing to blender.characters@gmail.com.

Sybex strives to keep you supplied with the latest tools and information you need for

your work. Please check the book’s website, www.sybex.com/go/prototypingar, where we’ll

post additional content and updates that supplement this book if the need arises.

http://www.sybex.com/go/prototypingar
mailto:blender.characters@gmail.com
http://www.sybex.com/go/prototypingar

Prototyping
Augmented Reality

C hap te r 1

Getting Started with
Augmented Reality

Augmented reality (AR),  in which virtual content is seamlessly

integrated with displays of real-world scenes, is an exciting area of interactive design.

With the rise of personal mobile devices capable of producing interesting AR environ-

ments, the vast potential of AR has begun to be explored. The goal of this chapter is to

help you become familiar with the terminology, tools, and technology necessary to begin

your own AR explorations and experiments.

In this chapter, you’ll learn about the following topics:

What is augmented reality?■■

Tools and technologies■■

AR necessities■■

2  ■   Chapter 1 : Getting Started with Augmented Reality

What Is Augmented Reality?
The term augmented reality (AR) is used to describe a combination of technologies

that enable real-time mixing of computer-generated content with live video displays.

Traditionally, it is distinguished from virtual reality (VR) in that VR involves creating

complete, immersive 3D environments, and AR uses various hardware technologies to

create an annotated, or “augmented,” composite based on the real world.

There are several ways that the virtual components and real content can be made to

interact. Techniques from image processing and computer vision can be used to make the

computer-generated elements interact with the content of the video in a convincing way.

Most current computer vision–based methods rely on predefined physical markers to

enable the computer vision system to get its

bearings in the visible 3D space. In Figure 1.1,

you can see an example of AR in which two

3D models are manipulated by use of printed

markers. AR systems that do not require

specially made markers, known as marker-

less systems, are also possible. Markerless

AR is a steadily progressing area of research,

and in the near future, robust visual AR sys-

tems that do not require markers will surely

become widely available.

Nonvision-based AR methods are gain-

ing in popularity on smartphone platforms.

These methods use a combination of the

device’s global positioning system (GPS)

or other location-tracking data and accelerometer data to determine where the device

is located and in what direction it is pointing. Based on this information, tags and

annotations are superimposed over the scene. These methods are the basis of several

geographical annotation services such as Layar, which is annotated for locations in the

Netherlands; mixare, an open source mix augmented reality engine, which currently

has data for Switzerland; and the Wikitude World Browser, which enables users from

around the world to contribute localized data.

This book is primarily concerned with computer vision–based AR. You’ll learn how

to incorporate computer-generated 3D content into live video using physical markers.

Getting into the details of location- and accelerometer-based AR is beyond the scope of

this book. However, I will mention relevant links and references to these technologies

where they are pertinent to the topic, such as in Chapter 10, “Setting Up NyARToolkit

for Android.”

Figure 1.1

Live video
augmented with

3D models

What Is Augmented Reality?  ■   3

A Brief History of AR
AR technology has its roots in computer interface research in the early days of computer

science. Many of the main concepts of AR have been familiar in movies and science fic-

tion at least as far back as movies like The Terminator (1984) and RoboCop (1987). Both

movies feature cyborg characters whose views of the world are augmented by a steady

stream of annotations and graphical overlays in their vision systems.

Practical systems using AR as it’s currently viewed began to be developed in the next

decade. The term augmented reality was coined in 1990 by Tom Caudell, a researcher at

The Boeing Company. Throughout the early and mid 1990s, Caudell and his colleagues

at Boeing worked on developing head-mounted display systems to enable engineers to

assemble complex wire bundles using digital, AR diagrams superimposed on a board over

which the wiring would be arranged. Because they made the wiring diagrams virtual, the

previous system of using numerous unwieldy printed boards was greatly simplified.

Throughout the 1990s, industrial and military AR applications continued to be devel-

oped. But the technical requirements for useful AR displays, such as bulky, expensive

head-mounted display devices, kept the technology out of reach for most users.

There were experiments incorporating AR technologies with the arts. Julie Martin,

wife and collaborator of art technology pioneer Billy Klüver, is credited with producing

the first AR theater production in 1994. The work, titled Dancing in Cyberspace, uses

dancers who interact with virtual content projected onto the stage.

At the end of the 1990s, another major development in AR came about when Hirokazu

Kato created ARToolKit, a powerful library of tools for creating AR applications.

ARToolKit helped to make AR accessible to a much wider audience of designers and

developers, and it provided the basis of much of the technology addressed in this book.

AR in Practice
In spite of the availability of ARToolKit, potential applications of AR have been slow to be

explored fully. One big reason for this has been the demanding hardware requirements

for achieving the benefits of an AR interface. The user must be looking at a display that

has access both to camera data and to data from a computer processor capable of running

the AR application. This setup was not standard even for consumer desktop environments

just a few years ago, and it was almost unheard of in consumer mobile environments until

the rise of smartphones, such as the iPhone and the Android family of phones. These

smartphones, and the burgeoning tablet computer market that has followed them, have

helped usher in a new era of interest in AR programming. With smartphones and tablets,

users have an integrated camera and computer at their fingertips at all times, opening up

many interesting new possibilities for AR applications.

4  ■   Chapter 1 : Getting Started with Augmented Reality

Whether by using mobile apps or through browser interfaces on computers with web-

cams, it has become easier than ever to give users an engaging AR experience on their

own devices, and the possibilities don’t end there. AR marketing campaigns have been

used by Hallmark, Adidas, and many other companies. In 2010, toymaker Lego created

a pioneering point-of-sale AR marketing campaign. Computer screens were set up at toy

stores carrying Lego toys and shoppers could hold up a box in front of the screen to see a

3D virtual representation of the completed Lego model in the video. In addition to being

an incredibly effective point-of-sale campaign, the campaign generated a great deal of

attention online, as shoppers posted their own videos of the experience. As discussed in

Chapter 7, “Interacting with the Physical World,” exploring alternate interfaces through

physical computing can expand the possibilities even further.

Several trends are leading to an explosion of interest in AR. One is the steady improve-

ment of computer vision technology, which will enable developers to work with more sub-

tle, less obtrusive, and more robust markers and even completely markerless AR. Another

trend is the rapid advance in display technologies for enabling AR. These include head-

mounted displays and projector-based displays, as well as handheld mobile devices.

Head-mounted displays are essentially a combination of a camera and display screens

that are worn like goggles or glasses. The viewing area may be a fully digital, opaque

video screen that displays video from the camera, or it may be transparent in a way that

allows the user to see the world directly with data laid over it. Head-mounted displays are

ideally suited to AR applications and are becoming lighter, less obtrusive, and less expen-

sive. In the long term, as wearable computers grow in popularity, head-mounted displays

are likely to become increasingly commonplace.

Perhaps even more interesting are recent experiments in projector-based AR displays.

Projector-based displays use projectors to project images or text directly onto surfaces

in the real world. This approach can be extremely versatile in suitable environments.

Projector-based displays can be used to present AR environments to large groups of

people at once in ways that head-mounted displays or mobile devices cannot. Small,

wearable projectors can also be used to create personal AR environments.

Other display methods may be available depending on specific application environ-

ments. Onboard AR applications for cars and airplanes can be used to add virtual con-

tent to dashboard displays. Online, browser-based AR applications can create engaging,

interactive experiences for visitors to a website, as in the case of the Hotels.com online ad

shown in Figure 1.2.

The recent rise in popularity of physical computing is also interesting from the stand-

point of AR. The last few years have seen incredible developments in accessible and open

physical computing platforms. These platforms consist of specific hardware specifications

for programmable microcontrollers along with high-level APIs for programming them.

Among the best known of these platforms are Wiring, Gainer, and Arduino. Of these,

What Is Augmented Reality?  ■   5

the most versatile and widely used is Arduino. Using a physical computing platform such

as Arduino, you can program applications that interact physically with the world using

electronic sensors for input. This is a natural fit with AR, and it deepens the sensory pos-

sibilities of AR applications. With physical computing, the “reality” with which you can

process and program becomes much more than just video.

Prototyping for Innovation
Prototyping refers to creating prototypes or working demonstrations of systems or

devices. Prototyping is traditionally associated with innovative hardware constructions.

Before manufacturing and mass-producing a new invention, it is desirable and often

necessary to have a working implementation, however crude, to demonstrate it. Products

ranging from mobile phones to automobiles typically go through a prototyping step in

their design to test and demonstrate technical features. In electronics, prototyping by

means of a temporary prototyping board (or breadboard) enables the circuit designer to

set up a working circuit for testing without having to waste materials by soldering a per-

manent circuit prematurely. The same principles are becoming increasingly true of soft-

ware. Many people who are not professional programmers nonetheless have interesting

and innovative ideas for software. Software prototyping tools such as the Processing pro-

gramming environment were created for such people. Just as an inventor can prototype

Figure 1.2

Hotels.com’s
virtualvacay.com
site features interac-
tive AR content.

6  ■   Chapter 1 : Getting Started with Augmented Reality

a device in order to seek funding and one day achieve mass production, an artist or

designer can prototype an application or software environment that can later be imple-

mented professionally in a more robust or faster language.

Interactive systems and environments are exactly the kind of things that can ben-

efit from accessible prototyping tools. Interaction designers may want to be able to put

together quick and simple AR demonstrations without having to deal with the low-level

headaches of compiling and building software.

A huge amount of room for innovation exists in the field of AR. My goal is to bring the

basic tools of AR to as broad an audience of creative people as possible and to encourage

experimentation and exploration. For this reason, I’ve tried to cover a range of different

application contexts and display modes.

Tools and Technologies
A variety of software technologies is available for developers interested in working with

AR, ranging from commercially available proprietary solutions to open source projects

with little or no professional support and even combinations of both. In this book, I’ve

selected tools that are reasonably accessible, inexpensive or free, minimally restrictive,

and versatile while also enabling nontrivial programming. Much of what is covered in the

book is connected with the NyARToolkit Java class library, which is based on the original

ARToolKit.

However, depending on your needs, other software solutions are well worth investigat-

ing. In this section, I take a quick look at a few that you might want to check out.

ARToolKit
ARToolKit is the original C/C++ library that was the basis for many of the AR develop-

ment resources that followed. ARToolKit was originally developed by the University of

Washington’s Human Interface Technology Laboratory (HITLab) as an open source

library and released under the GNU General Public License (GPL). ARToolKit is now

maintained by HITLab and HIT Lab NZ at the University of Canterbury, New Zealand.

Proprietary versions of the software suitable for creating closed source applications is

available from ARToolworks, Inc. ARToolworks has adapted the original ARToolKit to be

useful on a variety of platforms and offers numerous solutions with professional support.

For example, ARToolKit for Apple’s mobile operating system, iOS, is available under a

proprietary license from ARToolworks.

Quick Mockups with BuildAR
A quick and easy way to set up a basic AR viewer is the BuildAR application from HIT

Lab NZ, available at www.buildar.co.nz. BuildAR is a proprietary application available for

http://www.buildar.co.nz

AR Necessities  ■   7

Windows, with a freely downloadable trial version that enables you to add a 3D model

and control its rotation, translation, and scale. BuildAR is suitable for some prototyp-

ing and demoing of limited AR applications. The commercial version comes with useful

tools for training markers. BuildAR requires no programming at all, which is both its

strength and its weakness. It’s the easiest way to get an AR scene up and running on your

Windows computer, but it is fairly limited in what you can do.

DART
The Designer’s Augmented Reality Toolkit (DART) is a set of software tools for prototyp-

ing AR applications using the Adobe Director multimedia programming environment.

You can download the software and find installation instructions and other documenta-

tion at www.cc.gatech.edu/dart/. Users familiar with the Director environment should

definitely look into DART, as it can be used to prototype AR environments in a similar

manner to some of the software discussed in this book. The website also claims that it is

well suited to interacting with other programming languages.

Markerless AR with PTAM
Parallel Tracking and Mapping (PTAM) is a set of development tools for markerless AR.

The source code is available at http://ewokrampage.wordpress.com. Getting PTAM up and

running requires experience in building and compiling C projects, but the ability to set

up AR scenes without markers opens up many interesting possibilities. Users with C/

C++ experience should look into PTAM.

AR Necessities
For doing any kind of visual AR, a decent computer (anything built in the last three years

should be adequate for the purposes of this book) with a camera is a must. Many computers

have cameras built in nowadays, and these will work fine for many of the projects in this

book. However, because they are built into the computer the cameras are difficult to aim

and place, so even if your computer has a webcam, you might prefer to invest in an inex-

pensive USB webcam.

As for what kind of computer you use, there are advantages and disadvantages to all

of the major platforms. For this book I’ve made every effort to track down cross-platform

solutions, but this hasn’t always been possible. Depending on a variety of factors—

including your operating system, your specific computer manufacturer, your graphics

card, and others—you may find that some of the Java libraries mentioned in this book

need special handling to work on your platform. In a few cases, there are nontrivial

restrictions on which Java library items will work on specific platforms. I will clarify any

restrictions as they come up.

http://www.cc.gatech.edu/dart/
http://ewokrampage.wordpress.com

8  ■   Chapter 1 : Getting Started with Augmented Reality

Getting the Software
Throughout this book, you’ll be introduced to a variety of software tools, large and small.

I’ll describe where you can download the necessary software as it is pertinent. In most

cases, installing what you need will be straightforward, but in the later chapters you’ll

encounter some cases where it is a bit more complicated to get your programming envi-

ronment set up correctly. In these cases, I’ll walk you through the steps.

Most of the software used in the projects in this book is open source, released under

an Open Source Initiative (OSI)–approved license. You can download it all freely, and

it is freely distributable. In cases where I mention software that has different licensing

restrictions, I will make those clear. Some of the software packages, such as the Eclipse

integrated development environment (IDE) and the Processing programming environ-

ment, are major projects that are widely used and very well supported by developers.

Large, OSI-approved open source projects can be relied on to remain available well into

the future. In other cases, I may describe a small library or modification to a library that

has been created by an individual and may only be available from that person’s personal

website or blog. In these cases, I will make sure that the software also remains perma-

nently available on the Sybex website for this book (www.sybex.com/go/prototypingar).

The World of Java
Much of the software discussed in this book is based on the Java programming language

(the biggest exception to this is Chapter 8, “Browser-Based AR with ActionScript and

FLARManager,” which deals with ActionScript). If you have experience programming in

Java, you’re going to feel very comfortable. If not, I think that the progression from the

Processing environment to Java that this book follows is a great way to ease into Java pro-

gramming. Processing is essentially a simplified and streamlined subset of Java built for

ease of use by nonprogrammers. When you’ve gotten comfortable with Processing, the

leap to Java is not so intimidating. Of course, a thorough introduction to Java program-

ming is far beyond the scope of this book, but you should be able to pick up where the

book leaves off and study Java itself with other resources.

The benefit of Java from the standpoint of this book is the ease with which Java appli-

cations can (usually) be ported from platform to platform. With the Java-based software

described in this book, you should not need to be concerned too much with the low-level

details of your software-building environment. The ActionScript code described in

Chapter 8, likewise, is very portable across platforms.

Peripheral Hardware
In addition to a computer and a camera, several other significant pieces of hardware

will be required for you to follow along completely with some of the advanced projects

in this book.

http://www.sybex.com/go/prototypingar

AR Necessities  ■   9

Chapter 7 introduces physical computing with Arduino. This chapter is heavily hard-

ware based. You will need a minimum of an Arduino microcontroller unit, a breadboard

for circuit prototyping, jump wires, a 180-Ohm resistor, and an elec-

tronic pressure sensor. You will also need either a couple of small

alligator clips or a soldering iron and solder. You can buy all of this

online (not counting the soldering iron and solder, which you prob-

ably should buy only if you plan to use it for other things as well). In

Chapter 7, I’ll go into more detail about where to order these things.

Chapter 10 deals with programming AR for the Android environ-

ment. For this, an Android handset is highly recommended. The

Android SDK handset emulator does not have simple built-in access

to a USB camera, so being able to access the device’s camera is a big

advantage.

Markers
The variety of AR discussed in this book uses specific types of

markers, originally designed for ARToolKit. The computer vision

algorithms used here recognize the markers, and they are able to cal-

culate the orientation of the markers in space based on the shape of

the markers’ projected outline in the camera view. A marker can be

printed or displayed in any way that a camera can see it. Figure 1.3

shows a marker displayed on a mobile device.

ARToolKit markers are square, with an image in the middle and

a very thick, black, square outline around the image. Outside the square is typically a

white edge. Most of the code samples from packages derived from ARToolKit use one of

a handful of widely available marker patterns, such as the classic Hiro marker shown in

Figure 1.4. This one and the Japanese kanji

symbol marker are available from numerous

sources online and are included among the

downloadable support files for this book.

You’ll probably want to create your own

marker designs. This involves two steps. The

first step is to create the graphical design

itself. The second step is to “train” the system

on the design. This step produces what is

called a pattern file (often named using the

extension .patt or .pat), which can then be

loaded into your AR application so that the

application can recognize the pattern.

Figure 1.3

An AR marker dis-
played in a browser
on an iPod touch

Figure 1.4

The classic Hiro
marker

10  ■   Chapter 1 : Getting Started with Augmented Reality

Creating the graphic can be done by hand. See the following website for information

on the exact dimensions if you want to do this: www.artoolworks.com/support/library/

Creating_and_training_new_ARToolKit_markers.

However, it is much handier to use the online Marker Maker site at www.roarmot.co.nz/ar/,

shown in Figure 1.5. Using this service, you can submit your own JPEG file, and the sys-

tem will automatically create a properly formatted marker PDF file.

Training the pattern is somewhat trickier, but an excellent online resource exists

for this as well. To train the pattern, first print the pattern on paper or display it in the

manner you want to display it in your application—on a tablet or smartphone screen,

for example. Go to http://flash.tarotaro.org/blog/2009/07/12/mgo2/ and click the

ARToolKit Marker Generator Online Multi link. The website’s Flash application will

request access to your webcam, which you should grant. Hold your pattern in front

of the camera until the application recognizes it as a marker candidate and draws a

red outline around the marker’s edge, as shown in Figure 1.6. For the purposes of this

book, leave the options at their default values, and then click Get Pattern. The pattern

will be generated, as shown in Figure 1.7. You can either continue and make more before

saving them all, or you can click Save Current and save the pattern file to a directory.

Save the resulting pattern files somewhere safe. You’ll learn how to use them in your

applications later in this book.

One final note regarding AR markers: In a few years, when markerless AR gains cur-

rency, these markers will be regarded as crude, unsightly, and hopelessly dated. So I

strongly recommend you resist the temptation to get them tattooed on your skin.

Figure 1.5

The ARToolKit
Marker Maker site

http://www.artoolworks.com/support/library/Creating_and_training_new_ARToolKit_markers
http://www.roarmot.co.nz/ar/
http://flash.tarotaro.org/blog/2009/07/12/mgo2/
http://www.artoolworks.com/support/library/Creating_and_training_new_ARToolKit_markers

AR Necessities  ■   11

Figure 1.6

Recognizing a
marker with the
online Marker
Generator

Figure 1.7

Generating
the pattern

12  ■   Chapter 1 : Getting Started with Augmented Reality

Other Useful Items
There are a few more items I’ve found helpful in AR prototyping, although they aren’t

strictly necessary. For easy rotation of AR markers, it’s nice to have some kind of small

turntable or lazy Susan. I wasn’t able to find anything suitable readymade, so I built my

own using the swivels shown in Figure 1.8 (easily purchased at any good hardware store

or online). I picked up some Styrofoam and rubber pieces from the local hobby shop and

jury-rigged the turntable you see in Figure 1.9.

Finally, mounting some markers on cardboard and Popsicle sticks makes them easy to

manipulate. The computer vision algorithms are very sensitive, and even slightly obscur-

ing the marker can render it unrecognizable to the

algorithm. A Popsicle stick gives you a nice handle

and keeps your fingers out of the way of the marker

content, as shown in Figure 1.10.

You now have the basic necessities to get started

experimenting with AR. In the next few chapters,

you’ll take a bit of a detour to learn some simple pro-

gramming with Processing and 3D content creation

with Blender. In Chapter 6, “Augmented Reality with

Processing,” you’ll get a chance to put your markers

to use.

Figure 1.8

Lazy Susan swivels

Figure 1.9

A homemade turntable

Figure 1.10

Markers on Popsicle sticks

C hap te r 2

Introduction to Processing

The first hurdle  in learning any complex piece of software is to become

familiar with the interface.

In this chapter, you’ll learn about the following topics:

The Processing programming environment■■

Drawing in Processing■■

Working with classes■■

14  ■   Chapter 2 : Introduction to Processing

The Processing Programming Environment
Processing is an open source, Java-based programming environment for creative people

who are not primarily computer programmers. Its biggest strength is that it is compara-

tively easy to learn, and it enables creators to get started quickly producing sophisticated

graphical and interactive applications while minimizing the headaches often associated

with compiling and building software. On the other hand, because it is basically an

extension of the Java programming language, it has, in principle, access to all the power

of Java. In general, the syntax of Processing is straightforward to anyone who has any

programming experience at all in a procedural programming language such as Java or C.

If you have a basic understanding of variables, functions, and control structures, such as

for loops, then programming in Processing should come as second nature for you. If not,

you will learn about those things as you go.

Processing has libraries available for working with Arduino, for implementing AR

applications, and for building for the Android platform, making it a good place to start

for many prototyping tasks related to this book. You should be aware of some important

limitations in how these libraries can be used in conjunction with each other—at present,

it’s not quite the one-stop solution it might one day be. Later in the book, you’ll deal with

more advanced use cases where Processing can’t be easily used, but it’s an easy entrance

point for programming simple AR projects.

Installing and Running Processing
You need to download and install Processing for your own platform from www.processing

.org. The download and installation process is relatively straightforward. In the case of

the Windows platform, you have two choices: either the standard download or expert

edition (labeled “Without Java”). The expert download is for users who already have the

Java Development Kit installed on their computer. If you’re not sure whether you do,

choose the standard download.

As of this writing, some of the Java dependencies that Processing relies on can be incon-

sistent when Java is installed independently on the 64-bit version of Windows 7. If you

are using this operating system, I highly recommended that you install the standard (Java

included) version of Processing, even if Java is already installed on your computer.

Click the installation executable, and follow the steps to install Processing for your

platform. When you’ve finished, click the icon to start Processing.

You should see a window open like the one shown in Figure 2.1. This is the Processing

integrated development environment (IDE). This is the interface in which you’ll write

and execute your code. The main white area of the window is the code editing area. It is

http://www.processing

The Processing Programming Environment  ■   15

already open to a new sketch (Processing programs are called sketches) named according

to the current date. In the bar above this, you’ll see the Run, Stop, New, Open, Save, and

Export buttons. The black area below is the standard output area where you’ll see error

messages and where you can print values for debugging.

The location of the menu bar depends on your operat-

ing system. In Windows, the menu bar is along the top of the

Processing window, as shown in Figure 2.1. On the Mac, the

menu bar runs along the top of your screen, as is standard on

Macs. In the menu bar, you’ll see the Processing, File, Edit,

Sketch, Tools, and Help menus.

Your First Processing Program
Running a Processing program is incredibly simple. In fact,

you can create a windowed application with just a single line

of code. Enter the following into the editor, and click the Run

button:

size(600, 400);

The result should look something like Figure 2.2. The new win-

dow that opens is your sketch. The window is 600 pixels wide

and 400 pixels high, as specified by the arguments of the size()

function.

Figure 2.1

The Processing
IDE window

Figure 2.2

Running a
Processing sketch

16  ■   Chapter 2 : Introduction to Processing

Of course, there’s nothing in the window. All you’ve done so far is determine the size

of your sketch. To put some content in the window, add the following lines below the line

where you called the size() function:

background(0);

fill(255, 255, 0);

stroke(255, 0, 255);

strokeWeight(10);

ellipse(300, 200, 200, 200);

When you run this code, the sketch shown in Figure 2.3 will appear: On your screen,

you’ll see a yellow circle with a thick magenta outline on a black background. The code

for this should be nearly self-explanatory even for a novice programmer, but there are a

few points worth noting.

The first line of the code after the size() func-

tion is the background() function, which fills the

background with a color. Like many functions in

Processing that take colors as arguments, the back-

ground() function can be called with one numerical

argument, two arguments, three arguments, or four

arguments. If you call it with one argument, as in

this example, the color is assumed to be grayscale and

the argument represents its grayscale value (using

a default range of 0–255, which can be modified to

whatever range you want to use). In this case, the

argument of 0, then, means black. If you call back-

ground() with two arguments, the first argument is

the grayscale value and the second argument is the alpha (opacity) value. If you call back-

ground() with three values, they can represent red, green, and blue components (using the

default RGB color mode) or hue, saturation, and brightness (using the HSB color mode

setting). Calling background() with four arguments adds an alpha value to the three-

argument call.

The same argument pattern comes up in many other cases where colors are passed

to a function. The next two lines of the code are further examples of this way of passing

color information to a function. The fill() function takes the same kinds of arguments

to determine the fill-in color of the next shape to be drawn, and the stroke() function

determines the color of the outline around the next shape drawn. In this case, the fill

value is yellow, denoted by the maximum values for red and green and no blue; the stroke

value is magenta, denoted by the maximum values for red and blue, and no green. Both

colors are drawn at full opacity because there is no alpha argument.

The strokeWeight() function sets the thickness of the outline, and the ellipse() func-

tion draws the circle. The first two arguments of this function determine the center point

Figure 2.3

Running a
Processing sketch

The Processing Programming Environment  ■   17

of the ellipse, and the third and fourth arguments determine the width and height of the

ellipse. If these last two values are the same, of course, a circle is drawn.

Interactive Mode
In order for your Processing sketch to change over time or react to input, you must use

Interactive mode. This involves calling your code from within two special functions,

setup() and draw(). You use the setup() function when you include code that is intended

to run only once: when your sketch is first executed. This function determines the start-

ing state of the sketch; hence its name. The draw() function, by contrast, is called repeat-

edly as the sketch runs. The contents of this function determine how the sketch window

is redrawn as values change as the sketch runs. For a simple example, create a new sketch

by choosing File ➔ New from your Processing menu bar (either at the top of the sketch

window or at the top of your screen, depending on your operating system). In the editor

window, enter the following code:

int i = -50;

void setup(){

 size(300, 300);

 fill(255);

 stroke(0);

 strokeWeight(3);

}

void draw(){

 background(100);

 ellipse(150, i, 100, 100);

 i++;

 if(i > 350){

 i = -50;

 }

}

When you run this sketch, you should see a white circle with a black outline moving

downward over a gray background, as illustrated in Figure 2.4.
Figure 2.4

A sketch with
animation

18  ■   Chapter 2 : Introduction to Processing

Let’s take a quick look at the code. The very first line is a declaration of the variable i:

int i = -50;

This will be the integer that will determine the vertical location of the circle to be drawn.

This value will be used to count pixels, and because pixels are discrete units, an integer

value is most appropriate. Integer-valued variables are declared with the int declaration.

The value assigned is –50, which will initialize the center location of the

circle 50 imaginary pixels above the top edge of the sketch window.

Why is this? A standard 2D Processing sketch like the one described here

is drawn into the sketch window according to an x,y coordinate system run-

ning downward and to the right from an origin point in the upper-left corner

of the window, as illustrated in Figure 2.5.

Coordinate values of less than zero or greater than the window size can be

used, but they will “draw” the element beyond the edge of the visible window

and it will not be displayed onscreen.

The next section is the setup() function:

void setup(){

 size(300, 300);

 fill(255);

 stroke(0);

 strokeWeight(3);

}

You’ve seen the content of this function already in this chapter, so you should know what

it does. The only difference is that now it is enclosed in a setup() function definition, so

Processing knows that it is running in interactive mode and that this code will be exe-

cuted only once, when the sketch begins. Note that either function can be empty, and you

define either function without defining the other function.

The draw() function is where the action happens. First the gray background is drawn:

void draw(){

 background(100);

Then the ellipse is drawn:

 ellipse(150, i, 100, 100);

Note that the i variable is used to position the circle vertically. Since the circle has a

diameter of 100 pixels, positioning the circle’s center 50 pixels above the top edge of the

window initializes the circle just off the screen.

The next line of code increments the variable:

 i++;

If you’re familiar with the syntax of any of the most commonly used programming lan-

guages, you’ll recognize this. It has the same meaning as i = i + 1; that is, take the value

of i and increase it by 1.

Figure 2.5

The Processing 2D
coordinate system

X

Y

Drawing in Processing  ■   19

The last part of the sketch is a conditional control structure. If the value of i goes

above 350, it is reset to –50. This places the circle back up above the top edge of the sketch

after it drops off the bottom of the sketch:

 if(i > 350){

 i = -50;

 }

}

Consider the reasons why the various function calls are placed as they are in this

sketch. For example, intuitively it might seem that setting the background color would be

something you could do just once at the beginning of the sketch. Why do you think the

background() call is in the draw() function here? Experiment with changing this and see

what happens.

As an exercise, adapt this sketch to make a simple drawing program that uses a

sequence of circles to draw curly lines that follow the movements of your mouse. Use

the special Processing variables mouseX and mouseY to access the mouse’s screen position.

These special variables always automatically contain the values corresponding to wher-

ever the mouse is located on the screen. Using these variables makes it incredibly simple

to incorporate mouse information into your sketch. The function call noStroke() can be

used to draw the circle without an outline. Consider varying the opacity of the circle for

an airbrush-like effect. A solution for this exercise is shown in the “Simple Airbrush”

sidebar at the end of the chapter.

Drawing in Processing
Processing is first and foremost a programming environment for putting graphical ele-

ments onto a display quickly and easily. For this reason, getting familiar with drawing

functions is a big part of learning the basics of Processing. Fortunately, it’s very easy

and the Processing reference web page (both online and included locally as part of your

Processing download) is a great resource for looking up everything you need to know.

Primitive Shapes
There are seven basic 2D shape primitive functions in Processing: point(), line(), triangle(),

quad(), rect(), ellipse(), and arc(). Each of these functions requires a different set of

arguments to define the shape’s parameters.

The simplest is point(), which takes only two arguments representing x and y values

and draws a single pixel (the color determined by the current stroke() color value) at that

point. The line() function takes four arguments to represent the x and y coordinates of

each end of the line, and the triangle() and quad() functions take six and eight argu-

ments, respectively, representing the coordinates of the shape’s corner points.

20  ■   Chapter 2 : Introduction to Processing

The rect() function takes four arguments to create a rectangle. By default, the first

two arguments represent the center point coordinates and the third and fourth argu-

ments represent the width and height of the rectangle. A special function, rectMode(),

can be called to change the rectangle draw mode so that the first two arguments repre-

sent the top-left corner (rectMode(CORNER)) or so that the third and fourth arguments

represent the “radius,” or distance of the edges from the center point of the rectangle

(rectMode(RADIUS)). The CORNERS rect mode interprets the first two arguments as one

corner and the third and fourth arguments as the coordinates of the opposing corner.

The default rect mode is CENTER.

The ellipse() function that you saw in the previous example works analogously, and

the ellipseMode() function can take the same four mode arguments—CORNER, CORNERS,

RADIUS, and CENTER. Their meaning is analogous to the rectangle case.

The arc() function draws a portion of an ellipse extending from one angle to another

angle. This function takes six arguments. The first two arguments represent the posi-

tion of the arc, the second two represent the width

and height of the ellipse, and the fifth and sixth

arguments represent the angles that the arc extends

from and to. Angles in Processing are represented in

radians, and the last two arguments for this function

must be given in radians. Because most people prefer

to think of angles in degrees, however, the radians()

function can be used to convert degrees to radians.

Furthermore, angles for the arc() function are con-

sidered to rotate clockwise beginning with the zero

angle directly to the right of the center, as shown in

Figure 2.6.

Therefore, the code here yields the arc shown in Figure 2.7:

size(600,400);

arc(300, 200, 300, 300, radians(90), radians(200));

Figure 2.6

Angles for the
arc() function

270

90

180 0

45135

225 315

Figure 2.7

An arc

Drawing in Processing  ■   21

Working with HSB Color
The default color mode in Processing is RGB, where the three numerical values stand for

red, green, and blue components of the color, respectively. To understand better how the

HSB color mode can be useful, try typing in the following sketch and running it:

void setup(){

 size(500, 500);

 colorMode(HSB, 1);

}

void draw(){

 for(int x=0; x <= 500; x++){

 stroke(x/500.0, mouseX/500.0, 0.7);

 line(x, 0, x, 500);

 }

}

Let’s look more closely at what’s new here. In the setup() function, the call to colorMode()

is introduced. This function does two things here. The first argument changes the color

mode from RGB to HSB. As mentioned previously, doing so will make the color argu-

ments of subsequent functions represent hue, saturation, and brightness, rather than red,

green, and blue. This function is very useful if you want to cycle through colors of the

rainbow or smoothly adjust the brightness or saturation of the color. Using HSB colors,

you can cycle through the color spectrum by simply incrementing the hue value. The

second argument of the colorMode() function determines the range to be used for color

arguments. The default range for color arguments is from 0 to 255, as you saw in previous

examples. In this case, however, it will be more intuitive to use a range between 0 and 1,

so the second argument here is 1:

 colorMode(HSB, 1);

The rainbow background is filled in this sketch by drawing a sequence of 1-pixel-

wide vertical lines and graduating their hue. Because the background is 500 pixels wide,

it is necessary to draw 500 lines. This is done with a for loop with x ranging from 0 to

500. The stroke() function is called to set the color of each line. The first argument

represents hue, and the value is x/500.0. When x is closer to 0 (closer to the left edge of

the window) the value of the argument is 0. As x approaches 500 (the right edge of the

window), the argument approaches 1. Thus, from right to left, the hue value ranges from

0 to 1, running through the entire range of available hues. The second argument here is

mouseX/500.0. This ranges from 0 to 1 depending on where you move the mouse—from

0 when the mouse is at the left of the window to 1 when the mouse is at the right of the

window. This controls saturation, or the “purity” of the colors. At 0 saturation, all col-

ors are gray. Finally, the third argument sets the brightness. This can also range from 0

(black) to 1 (maximum brightness for each color):

 stroke(x/500.0, mouseX/500.0, 0.7);

22  ■   Chapter 2 : Introduction to Processing

Simple Trigonometry
Being familiar with basic trigonometric functions is very useful when you’re program-

ming graphics-related software. The next sketch shows how to use Processing’s built-in

trigonometric functions cos() and sin(). Type the following and run it:

int angle = 0;

float rads = 0.0;

void setup(){

 size(500, 500);

 colorMode(HSB, 1);

}

void draw(){

 background(0.5);

 rads = radians(angle);

 noFill();

 stroke(0.0, 0.0, 1.0);

 arc(250, 250, 200, 200, 0, rads);

 stroke(0.0, 0.0, 0.0);

 line(250, 250, 250 + cos(rads)*100, 250);

 line(250, 250 + sin(rads)*100, 250, 250);

 angle++;

 if(angle == 360){

 angle = 0;

 }

}

When you run this sketch, you should see an animation of a white arc being drawn at

increasing angles along with black lines whose lengths change in relation to the angle.

Now let’s take a closer look at the code. The first few lines declare some variables. The

angle variable is an integer, and it will represent the angle of the arc in degrees. The rads

variable is a floating-point variable, and it will represent the angle in radians:

int angle = 0;

float rads = 0.0;

When the draw() function is called and the background drawn, the next thing to do is

to pass the value in radians of the current angle to the rads variable. The angle will incre-

ment by one degree each time the window is redrawn (this incrementing is performed

later in the draw() function):

 rads = radians(angle);

The next couple of lines set the draw mode to noFill and the stroke to white. Note

that, in HSB color mode, if the second color value (saturation) is zero, then the color is

grayscale by definition, and the third value determines where the value lies between

Drawing in Processing  ■   23

black (0) and white (1). In this case, the first value (hue) does not matter. Finally, the arc

is drawn using the value of rads as its angle argument:

 noFill();

 stroke(0.0, 0.0, 1.0);

 arc(250, 250, 200, 200, 0, rads);

The next few lines set the stroke color to black and draw two lines: one representing

the cosine value of the angle and one representing the sine value of the angle:

 stroke(0.0, 0.0, 0.0);

 line(250, 250, 250 + cos(rads)*100, 250);

 line(250, 250 + sin(rads)*100, 250, 250);

Finally, the angle value is iterated by one degree with each redraw of the window.

When it hits 360, it is reset to 0:

 angle++;

 if(angle == 360){

 angle = 0;

 }

You can make use of the changing angles to position objects around a circle. Try

inserting the following code after the line line(250, 250 + sin(rads)*100, 250, 250);:

 noStroke();

 fill(abs(sin(rads)), 1.0, 1.0);

 ellipse(250+(cos(rads)*50), 250+(sin(rads)*50),

 5+abs((sin(rads)*5)), 5+abs((cos(rads)*5)));

This code draws an ellipse that rotates around the shape of the arc. Using sines and

cosines enables you to locate points on a circular trajectory based on an angle. This is

how they are used in the first two arguments of the ellipse() function. The number 250

is added to the x and y values to make them relative to the center of the 500 × 500–pixel

window. The width and height of the ellipses is also tied to the sine and cosine values of

the angle.

Putting Things Together
You can combine the example code from the previous sections with a few more whistles

and bells to get more of a sense of how cosines and sines can be used to derive simple har-

monic motion and how for loops can be used to control changing values. Experiment on

your own with incorporating the different things you’ve learned so far into more complex

sketches. The complete example you’ll find in the download material for this chapter (go

to www.sybex.com/go/prototypingar)is reprinted here:

//declare the variables

int angle = 0;

float rads = 0.0;

http://www.sybex.com/go/prototypingar

24  ■   Chapter 2 : Introduction to Processing

//setup function

void setup(){

 size(500, 500);

 colorMode(HSB, 1);

 rectMode(CENTER);

}

//repeating code

void draw(){

 rads = radians(angle);

 for(int x=0; x <= 500; x++){

 stroke(x/500.0, abs(cos(rads)), 0.7);

 line(x, 0, x, 500);

 }

 noFill();

 stroke(0.0, 0.0, 1.0);

 arc(250, 250, 200, 200, 0, rads);

 stroke(0.0, 0.0, 0.0);

 line(250, 250, 250 + cos(rads)*100, 250);

 line(250, 250 + sin(rads)*100, 250, 250);

 noStroke();

 fill(abs(sin(rads)), 1.0, 1.0);

 ellipse(250+(cos(rads)*50), 250+(sin(rads)*50),

 5+abs((sin(rads)*5)), 5+abs((cos(rads)*5)));

 ellipse(250+(cos(rads)*100), 250+(sin(rads)*100),

 10+abs((sin(rads)*10)), 10+abs((cos(rads)*10)));

 ellipse(250+(cos(rads)*150), 250+(sin(rads)*150),

 15+abs((sin(rads)*15)), 15+abs((cos(rads)*15)));

 ellipse(250+(cos(rads)*200), 250+(sin(rads)*200),

 20+abs((sin(rads)*20)), 20+abs((cos(rads)*20)));

 stroke(0.0, 0.0, 1.0);

 fill(0.0, 0.0, cos(rads));

 rect((cos(rads)*200) + 250, 50, 20, 20);

 fill(0.0, 0.0, 1.0 - abs(cos(rads)));

 rect((-cos(rads))*200 + 250, 450, 20, 20);

 fill(0.0, 0.0, sin(rads));

 rect(50, (sin(rads)*200) + 250, 20, 20);

Working with Classes  ■   25

 fill(0.0, 0.0, 1.0 - abs(sin(rads)));

 rect(450, (-sin(rads)*200) + 250, 20, 20);

 angle++;

 if(angle == 360){

 angle = 0;

 }

}

When you run this sketch, you should see an animation of

the arc being drawn at increasing angles along with other ele-

ments whose position and shapes change with the angle, as

shown in Figure 2.8. The background is a rainbow spectrum

from left to right that fades to grayscale when the angle is a

right angle pointing straight up or down.

Working with Classes
Processing is built on top of the Java programming language and can seamlessly inter-

face with Java libraries. Like Java itself, Processing is an object-oriented language. This

means that you can create complex custom data structures called classes and organize your

program based on the interactions between instantiated objects of these classes. If you’re

unfamiliar with object-oriented programming, this may sound more complicated than

it actually is. The following example should help you understand the basics of classes. It

also introduces some other basic programming concepts such as working with arrays and

user interaction with the mouse.

To get started, create a new sketch in Processing. Save it with the name Bouncers. The

completed sketch will create a bull’s-eye–like spot wherever you click on the window, which

will then bounce up and down from the point where you clicked. A total of five of these

spots will be created. If you click more than five times, then a previously placed spot will

disappear and a new spot will show up where you clicked.

Because each target is bouncing independently of the others, each different spot needs

to maintain location data about where it is on the bounce (that is, it needs to know its

current y coordinate value). This is exactly the kind of thing that is handled easily and

intuitively with classes and objects. You’ll create a class to represent the spots. This class

will contain information about how to draw the spot, and it will also contain class vari-

ables to hold data that is unique to instances (objects) of the class.

To define a class to which the sketch has access, you’ll create a new file in the same

sketch. Do this simply by adding a tab to the sketch. Click the arrow icon at the right

of the tab’s bar near the top of your Processing window and choose New Tab, as shown

in Figure 2.9. You’ll be prompted to give the new tab a name. Enter Spot, as shown in

Figure 2.8

A sample sketch
demonstrating
angles, shapes,
and color mode

26  ■   Chapter 2 : Introduction to Processing

Figure 2.10. The resulting window with both tabs is shown in Figure 2.11. You can choose

the file you want to edit by clicking on the corresponding tab.

Now that you’ve got the files set up as they should be, enter the code in the Spot file to

define a class called Spot as follows:

class Spot{

 int x, y;

 int rate = 1;

Figure 2.9

Adding a tab

Figure 2.10

Naming the new tab

Figure 2.11

The sketch with two tabs

Working with Classes  ■   27

 int initialY;

 boolean fall = true;

 boolean active = false;

 Spot(int xpos, int ypos){

 x = xpos;

 y = ypos;

 initialY = y;

 }

 void display(){

 noStroke();

 fill(255);

 ellipse(x, y, 95, 95);

 fill(0);

 ellipse(x, y, 80, 80);

 fill(255);

 ellipse(x, y, 65, 65);

 fill(255,0,0);

 ellipse(x, y, 50, 50);

 fill(255);

 ellipse(x, y, 25, 25);

 fill(0);

 ellipse(x, y, 10, 10);

 }

}

In the Bouncers file tab, enter the following code. This is the main code for the sketch:

int height = 400;

int width = 500;

int spottotal = 5;

int spotcount = 0;

Spot[] spots;

void setup(){

 size(width, height);

 spots = new Spot[spottotal];

}

void draw(){

 background(180);

 for(int i = 0; i < spotcount; i++){

 spots[i].display();

 if(spots[i].active){

 if(spots[i].fall){

 spots[i].y = spots[i].y + spots[i].rate;

 spots[i].rate++;

 }else{

 spots[i].y = spots[i].y - spots[i].rate;

28  ■   Chapter 2 : Introduction to Processing

 spots[i].rate--;

 }

 }

 if(spots[i].y > height -45){

 spots[i].fall = false;

 }

 if(spots[i].y < spots[i].initialY){

 spots[i].rate = 1;

 spots[i].fall = true;

 }

 }

}

void mousePressed(){

 if(spotcount == spottotal){

 spotcount--;

 for(int i = 0; i < spotcount; i++){

 spots[i] = spots[i+1];

 }

 }

 spots[spotcount] = new Spot(mouseX, mouseY);

 spotcount++;

}

void mouseReleased(){

 spots[spotcount-1].initialY = mouseY;

 spots[spotcount-1].active = true;

}

When you’ve entered the code for both of these files, save your sketch and run it. You

should see a gray background. Clicking on the window will place up to five spots that

then bounce up and down, as shown in Figure 2.12.

Let’s go over this class definition in more detail. Look again at the Spot file, where the

Spot class is defined. The top-level function call is typical of all class definitions:

class Spot{

...

}

This declares a class called Spot, which you will be able to access

and use later in the main sketch. You can have multiple class

definitions in the same file, but in this case you’ll need only

one. All the code defining this class goes between the curly

brackets following this function call.

Figure 2.12

The Bouncers sketch

Working with Classes  ■   29

The following few lines declare variables that will be used by objects of the class. Each

object will have its own set of variables. These include the spot’s x and y coordinates, its

speed (the rate variable), its starting y position, and two Boolean (true/false) values. The

first one, fall, represents whether the spot is on its way down (or, if false, on its way up).

The second Boolean represents whether the spot is moving yet; the spot begins to move

when the user releases the mouse button.

 int x, y;

 int rate = 1;

 int initialY;

 boolean fall = true;

 boolean active = false;

The next chunk of code is the constructor method. This is a function (properly called a

method) that creates a new object instance of the Spot class. It takes two arguments repre-

senting an x and a y location and passes them to the Spot object’s internal variables:

 Spot(int xpos, int ypos){

 x = xpos;

 y = ypos;

 initialY = y;

 }

The next section of code defines a method called display() for the class. This is

defined just like an ordinary function, but in fact it is a method that pertains specifically

to objects of the Spot class. Each object can call its own instance of the method, as you’ll

see later when you look at the main code for the sketch. The internal code of this method

should all be familiar. It simply draws some concentric ellipses of black, white, and red to

give the bull’s-eye appearance.

 void display(){

 noStroke();

 fill(255);

 ellipse(x, y, 95, 95);

 ...

 }

That’s all there is to the class definition. Now turn your attention to the main sketch

code in the Bouncers file tab. The code starts out by declaring some boilerplate variables.

The height and width of the sketch window come first. Then comes spottotal, which

determines the maximum number of spots that will be allowed on the screen at once.

The next variable, spotcount, initializes the number of spots on the screen as 0. Finally,

the line Spot[] spots; declares a variable, spots, which represents an array of objects of

30  ■   Chapter 2 : Introduction to Processing

the Spot class. An array is an ordered collection of objects that can be iterated through

quickly. In this case, the five spots will be stored together in this array:

int height = 400;

int width = 500;

int spottotal = 5;

int spotcount = 0;

Spot[] spots;

Next is the setup code. This is all familiar by now, and there’s not much to it. The only

thing new is the line where a concrete value is assigned to the spots variable. Although

the variable was already declared, the actual array was not created. With this line, an

array is created to hold five Spot objects:

 spots = new Spot[spottotal];

In the draw() function, the sketch iterates through the existing spots using a for loop

ranging from 0 to the value of spotcount:

 for(int i = 0; i < spotcount; i++){

Using the i index for each of the spots in the array, that spot’s own display() method

is called to draw the spot to the screen using the following syntax:

 spots[i].display();

The next block of code runs only on the condition that the spot has been put into

motion by the user releasing the mouse button:

 if(spots[i].active){

After this, the sketch checks each of the active spots to see whether they are falling

downward or bouncing upward. If a spot is falling downward, its y coordinate is updated

accordingly and its speed (rate variable) is incremented. If it is bouncing upward, the y

value is updated and the speed is decreased:

 if(spots[i].fall){

 spots[i].y = spots[i].y + spots[i].rate;

 spots[i].rate++;

 }else{

 spots[i].y = spots[i].y - spots[i].rate;

 spots[i].rate--;

 }

The next chunk of code determines whether the spot has hit the bottom of the

window. If it has, then the fall variable is set to false, causing the spot to bounce back

upward:
 if(spots[i].y > height -45){

 spots[i].fall = false;

 }

Working with Classes  ■   31

When the bouncing spot hits the original height from which it was dropped, it falls

back downward (energy loss is not represented here, so it’s a simple and unrealistic

bounce, but the speed adjustment makes for a reasonably convincing bounce):

 if(spots[i].y < spots[i].initialY){

 spots[i].rate = 1;

 spots[i].fall = true;

 }

That’s all there is to the draw() function. However, there are two more functions that I

haven’t discussed yet: mousePressed() and mouseReleased(). These are both built-in func-

tions, and shrewd readers can probably hazard a pretty good guess about when they are

called. The mousePressed() function contains code that you want to execute when the user

presses the mouse button, and the mouseReleased() function contains code that you want

to call when the user releases the mouse button.

Starting from the last two lines of code in the function, you can see that clicking the

mouse button creates a new Spot object at the mouseX and mouseY position, puts it in the

array at the spotcount index, and increments spotcount. The first chunk of code in the

function is a conditional if statement that tests whether the maximum number of spots

(5) has been reached. If it has, it decreases the count by 1 and pushes each element of the

array down 1 (effectively deleting the oldest spot) before going on to add the new spot:

void mousePressed(){

 if(spotcount == spottotal){

 spotcount--;

 for(int i = 0; i < spotcount; i++){

 spots[i] = spots[i+1];

 }

 }

 spots[spotcount] = new Spot(mouseX, mouseY);

 spotcount++;

}

Finally, the mouseReleased() function assigns the initial y value and makes the new

spot active, thus dropping the spot when the user releases the mouse button. Note that

the spotcount value has already been incremented, so you use spotcount-1 to index the

recently created spot.

void mouseReleased(){

 spots[spotcount-1].initialY = mouseY;

 spots[spotcount-1].active = true;

}

 You can now run the sketch. If any parts of the sketch aren’t clear at this point, try

experimenting with values to see how that changes the behavior of the sketch. As an

32  ■   Chapter 2 : Introduction to Processing

exercise, try writing a similar sketch in which, rather than bouncing up and down, the

spots rotate in circles around a central point in the window. Between this example and

the example in the previous section, that shouldn’t be too hard to do.

S i m ple Ai r b r u s h

A solution to the exercise from the first section is shown here:

int i = -50;

void setup(){

 size(300, 300);

 fill(255, 10);

 noStroke();

 background(100);

}

void draw(){

 ellipse(mouseX, mouseY, 30, 30);

}

You now know the basics of programming in Processing, a very powerful prototyp-

ing environment. To do the kind of AR covered in this book, you’ll also need some basic

knowledge of how to create 3D content and work with it in Processing. The next chapter

takes a break from programming and introduces you to the basics of modeling suit-

able 3D content with Blender.

C hap te r 3

Blender Modeling
and Texturing Basics

At some point,  creating any kind of 3D experience usually involves build-

ing textured, potentially animated models to populate the 3D world. Interactive AR

experiences are no exception. In this chapter, you’ll take a break from programming to

learn the basics of working with Blender, the open source 3D content creation software.

With a bit of effort, you can learn to create whatever kind of 3D content you need. This

chapter will get you started by walking through the creation of a 3D-modeled, textured

character.

In this chapter, you’ll learn about the following topics:

Modeling with Blender■■

Baking a smooth AO texture■■

Creating a finished texture with GIMP■■

34  ■   Chapter 3 : Blender Modeling and Texturing Basics

Modeling with Blender
Blender is an open source application for modeling, texturing, animation, and many

other tasks in 3D content creation. Blender is free and open source and can be quickly

downloaded at www.blender.org. It is a very stable, feature-rich application and, in most

respects, ranks with other state-of-the-art consumer 3D applications. It’s a great applica-

tion for creating the sorts of 3D assets you’ll use in your AR applications.

This chapter and the next one will walk you through all the steps you’ll follow to cre-

ate an animated character suitable for the AR environments described in the book. If you

already know how to model, texture, rig, and animate with Blender, then you can skip

ahead to Chapter 5, “3D Programming in Processing.”

Which Version to Use?
There’s just one wrinkle in using Blender for the purposes of this book, and that’s decid-

ing which version of the software to use. Blender has recently undergone some signifi-

cant changes, many of which were connected with the user interface. For this reason,

the previous stable version Blender 2.49b and the current stable version 2.58 (versions in

between these were alpha- and beta-level test versions) are quite different. If you have no

background in Blender, the differences aren’t trivial.

In general, I recommend that those new to Blender simply start with learning version

2.58 at this point. However, the specific needs of this book present a dilemma. Each of

the development environments in this book requires the content to be exported in spe-

cific formats in order to be used in AR applications. Among the formats you may need to

export to are Collada (.dae), FBX, OBJ, Metasequoia, Ogre XML, and MD2. The prob-

lem is that much of Blender’s export functionality is in the form of third-party Python

scripts, some of which have not yet been fully updated for the 2.58 release. On the other

hand, a few of the exporters have been improved or introduced recently and are not avail-

able for Blender 2.49.

You can open older content in a newer version of Blender, so if you create your

animated model in 2.49, you can upgrade easily to Blender 2.58 when the necessary

exporter becomes available, or if the necessary exporter isn’t available for Blender 2.49.

However, animations created in and saved for Blender 2.58 will break if you try to open

them in Blender 2.49. For this reason, I’m going to show you how to do the modeling in

Blender 2.49.

There’s been a lot of excitement about the improved interface and event handling code

introduced in the Blender 2.5 series, and I know that many new users are eager to go

straight to learning Blender 2.58. Furthermore, third-party export scripts are progress-

ing rapidly, and it’s very likely that, by the time you’re reading this, whatever exporter

you need will exist for Blender 2.58, possibly even in a better form than the current 2.49

exporter. For this reason, you’ll find an overview of key differences between Blender 2.49

http://www.blender.org

Modeling with Blender  ■   35

and 2.58 in Appendix A, which will enable you to reconstruct the steps in this chapter in

Blender 2.58.

Also, you’ll find an in-depth rundown of the necessary file format and export infor-

mation in Appendix B, including which development environments require which file

formats and what export functionality is available for each version of Blender. You’ll also

find out where to get third-party export plug-ins and how to use them. If there’s a spe-

cific development environment in which you’re interested, you might want to check that

appendix first to see what restrictions there might be on Blender versions.

Modeling a Simple Alien in Blender 2.49
For now, you’ll work in Blender 2.49. If you haven’t already, download and install Blender

2.49b for your system (this is a slightly bug-fixed release of 2.49) from http://download

.blender.org/release/Blender2.49b. You can always download any version of Blender as

far back as version 1.0 by following the “older versions” link from the main download page.

When you open Blender for the first time, you’ll see a work area that looks like

Figure 3.1. The window taking up the upper two-thirds of the work area is the 3D

Viewport. Holding down the middle mouse button (MMB) and dragging your mouse

over this area will rotate your view of the space. Holding down Shift+MMB will pan, and

holding down Ctrl+MMB will enable you to zoom in and out.

A quick way to enter common view angles is to use your keyboard’s numeric keypad.

To use this, make sure that Num Lock is enabled on your keyboard. Pressing 1 on the

numeric keypad puts you in Front view, pressing 3 puts you in Side view, and pressing 7

puts you in Top view. For the work you’ll do in this chapter, this should be all you need.

Figure 3.1

Starting
Blender 2.49

http://download

36  ■   Chapter 3 : Blender Modeling and Texturing Basics

If you don’t have a numeric keypad or you prefer not to use it, there are several alterna-

tives; the most straightforward is to select the view angle from the View menu as shown

in Figure 3.2. As you can see, Front, Side, and Top views can all be accessed through this

menu. You can also toggle between Orthographic and Perspective views using this menu.

Read about user preferences in the online user manual at www.blender.org to find out

about other quick alternatives to using the numeric keypad.

To model the alien character, follow these steps:

	 1.	 Enter Front view in the 3D Viewport. Ensure that the default cube is selected by

right-clicking on it. Select Edit Mode from the drop-down menu in the header bar

at the bottom of the window, as shown in Figure 3.3. When you are in Edit mode,

the vertices of the mesh object are displayed and the structure of the object can be

edited.

Figure 3.2

Entering Front view
with the menu

Figure 3.3

Select Edit Mode.

http://www.blender.org

Modeling with Blender  ■   37

	 2.	 Press the W key to bring up the Specials menu, as shown in Figure 3.4. Select Subdi-

vide Smooth. Accept the default value by pressing Enter. This subdivides the mesh by

adding edges and vertices, while also smoothing the overall shape of the new mesh

to something like a ball, as shown in Figure 3.5. This will be the basis for the torso of

the character.

	 3.	 To begin extruding the leg, first toggle into Wire-

frame view by pressing the Z key. This makes it

possible to see and select all of the vertices of the

model. In the solid view, only vertices that are visi-

ble (that is, vertices on geometry that faces the user

view) can be selected. Now, you want to be able to

select both front and back faces simultaneously, so

you must be in Wireframe view. First, deselect all

vertices by pressing the A key. Use the Box Select

tool by pressing B and then dragging your mouse

to form a box around the lower-right faces of the

object, as shown in Figure 3.6. Note that although

only one selected face is visible, two faces are actu-

ally selected—the front face and the rear face.

	 4.	 Begin extruding the leg by pressing the E key and

choosing Region from the Extrude menu, as shown

in Figure 3.7. Move the extruded faces downward

Figure 3.4

Subdivide Smooth

Figure 3.5

The subdivided shape

Figure 3.6

Selecting vertices to extrude

38  ■   Chapter 3 : Blender Modeling and Texturing Basics

and slightly away from the center, and press the left mouse button to complete the

move. Press the S button to scale the faces, scaling it down slightly with the mouse,

as shown in Figure 3.8.

	 5.	 Extrude the leg again, as shown in Figure 3.9. Scale the extruded faces vertically

by pressing the S key to scale, followed by the Z key to constrain the scaling to the

z-axis, followed by 0; then press Enter. Scaling the vertices to a factor of 0 along

the z-axis has the effect of f lattening the faces downward, as you can see in

Figure 3.10.

Figure 3.7

Extruding the region

Figure 3.8

Scaling the extruded face

Figure 3.9

Extruding again

Modeling with Blender  ■   39

	 6.	 For modeling symmetrical objects, such as humans and animals, it is best to model

only half of the object and let Blender’s Mirror modifier take care of the other half.

The Mirror modifier copies the model’s geometry along a chosen axis. Before adding

a Mirror modifier, delete the

existing left side of the model.

First deselect all vertices by

pressing the A key. Then box-

select the vertices to delete, as

shown in Figure 3.11, by press-

ing B and dragging your mouse

to surround the vertices with

the box. Delete the vertices by

pressing the X key and choos-

ing Vertices from the Erase

menu, as shown in Figure 3.12.

The resulting half-model

should look like the one shown

in Figure 3.13.

Figure 3.10

Flattening the
geometry at
the knee

Figure 3.11

Selecting the left-
side vertices

40  ■   Chapter 3 : Blender Modeling and Texturing Basics

	 7.	 Add the Mirror modifier by locating the Modifiers tab in the Editing buttons area.

The buttons area is the window that covers the lower third of the workspace in the

default Blender configuration, when you first open the application. You can switch

to the Editing buttons area by press-

ing F9 over this window or by press-

ing the icon in the buttons area

header. Add the Mirror modifier by

choosing Mirror from the Add Modi-

fier drop-down menu, as shown in

Figure 3.14. The Mirror modifier will

appear in the panel, as shown in Fig-

ure 3.15. Select the Do Clipping option

to ensure that the left side and the right

side of the model stay merged together

along the centerline of the model. The

model should now appear as shown in

Figure 3.16. In Transparent view, by

default, the mirrored side of the model

shows up as a gray wireframe.

Figure 3.12

Deleting the vertices
Figure 3.13

The remaining half of the model

Figure 3.14

Adding a Mirror modifier

Modeling with Blender  ■   41

	 8.	 Before doing any further modeling, it’s a good

idea to resize the model along the y-axis (front

to back) to make the proportions more like a

humanoid figure. To do this, first enter Side view

by either pressing 3 on the numeric keypad or by

choosing Side from the View menu in the 3D

Viewport header, as described previously. Select all of the vertices by pressing the A

key. Press the S key to start scaling, followed by the Y key to constrain scaling to the

y-axis. Then scale the object with your mouse, as shown in Figure 3.17.

Figure 3.15

The Mirror modifier

Figure 3.16

The Mirror
modified mesh

Figure 3.17

Resizing along
the y-axis

42  ■   Chapter 3 : Blender Modeling and Texturing Basics

	 9.	 Return to Front view by pressing 1 on the numeric keypad (or using the View menu),

and deselect all vertices by pressing the A key. Box-select the end of the leg, as shown

in Figure 3.18, to continue modeling. Extrude with the E key, and scale with the S key

to complete the leg, as shown in Figure 3.19.

	10.	 Now turn your attention to the upper body. Begin extruding arms by first deselect-

ing all vertices with the A key and then box-selecting the vertices that will become

the shoulder, as shown in Figure 3.20. Make a few more extrudes as shown in Fig-

ure 3.21 and Figure 3.22 to begin to form the arm.

Figure 3.18

Selecting the
ends of the legs

Figure 3.19

Extruding to form
the lower legs

Modeling with Blender  ■   43

	11.	 Before completing the arms, let’s adjust the angle and shape of the arm and begin

forming the shoulder. Reposition and scale the extruded end, as shown in Fig-

ure 3.23. To move the vertices, press the G key (it stands for “grab”) and use your

Figure 3.20

Selecting vertices to extrude for arms

Figure 3.21

Extruding the arm

Figure 3.22

Extruding the
arm again

44  ■   Chapter 3 : Blender Modeling and Texturing Basics

mouse to position the elements; then press the left mouse button to complete the

transformation. To rotate the vertices, press the R key (for “rotate”), rotate the ele-

ment with the mouse, and then press the left mouse button to complete the transfor-

mation. To scale the selected faces, use the S key. When you have the shoulder as you

like it, extrude the end of the arm twice more—once to the elbow point and once

more to the end of the arm—as shown in Figure 3.24.

	12.	 Next, deselect all vertices with the A key, select the top faces as shown in Figure 3.25,

and extrude with the E key. Left-click to confirm the operation. Scale the extruded

faces down by pressing the S key to form the neck, as shown in Figure 3.26. Extrude

once more, and scale up to form the alien’s head, as shown in Figure 3.27.

Figure 3.23

Forming the
shoulder

Figure 3.24

Extruding the
rest of the arm

Modeling with Blender  ■   45

Figure 3.25

Selecting vertices
to extrude for
the head

Figure 3.26

Extruding and
scaling the base
of the neck

Figure 3.27

Extruding and
scaling the head

46  ■   Chapter 3 : Blender Modeling and Texturing Basics

	13.	 The mesh should now look something like Figure 3.28. Press the Z key to view in

solid mode and the A key to deselect all of the vertices. The basic shape is pretty

much finished, but it would be helpful to bend the knees and elbows to make pos-

ing a bit easier later. First work on the knees. To bend the knees, select the loop of

edges around the knee by holding

down the Alt key and pressing

the right mouse button over any

edge in the loop. Switch to Side

view by pressing the 3 key on the

numeric keypad. With the edge

loop selected, press the G key (to

grab) followed by the Y key to

constrain the move to the y-axis.

Use your mouse to move the knee

loops slightly forward, as shown

in Figure 3.29. Follow the same

procedure to bend the elbows, as

shown in Figure 3.30. You can

enter Top view by pressing the

numeric keypad 7 key or using

the View menu.

Figure 3.28

The mesh so far

Figure 3.29

Bending the knees

Modeling with Blender  ■   47

You’ve now finished the main modeling of the low-poly character that you’ll be ani-

mating in Chapter 4, “Creating a Low-Poly Animated Character,” and using for your

AR experiments. Some of the environments in which you’ll be working are extremely

restrictive in terms of what kind of 3D processing load they can handle, and only models

with a very low number of vertices can be used. Smoothing techniques like subdivision

surfacing are too computationally intensive. This model’s geometry should be sufficiently

lightweight for most uses described in this book.

However, although it’s necessary for the model to be very low-poly, it would still be

nice for it to look a bit more refined. To do this, we’ll make a second model, which has a

higher poly count and uses subdivision surfacing and smooth surface rendering to gener-

ate a surface texture. We can then create a mapping from the higher-poly model to the

low-poly model to generate a low-resolution surface texture for the low-poly model. The

effect won’t be perfect, but for the purposes of prototyping AR applications, it’s a good

compromise.

To do this, you must branch the model into two copies. One copy you’ll leave as is, and

that copy will be your low-poly model. The other copy you’ll continue to refine a bit and

then texture.

Figure 3.30

Bending the elbows

48  ■   Chapter 3 : Blender Modeling and Texturing Basics

To create the copies, first press the Tab key to enter Object mode. Duplicate the object

by pressing Shift+D then right-clicking the mouse to cancel moving the duplicated

object. You now have two objects, although it’s hard to see because they occupy the same

space. Put the duplicated mesh out of the way where you can’t see it by pressing the M key

to bring up the layer dialog box, shown in Figure 3.31. Click the second little square from

the left on the top row to put the duplicated mesh onto Layer 2. The Layer buttons in the

3D Viewport header should now look like this: . Note that there are little dots

in the upper-left two layers, indicating that there are objects in both Layers 1 and 2. Also

note that the upper-left box is shaded, indicating that only Layer 1 is currently visible in

the 3D Viewport.

The remainder of this chapter will deal with modeling and texturing the higher-poly

model. You’ll go back to the other mesh in the next chapter.

To refine the model, follow these steps:

	 1.	 Select the object by right-clicking on it. Press Tab to enter Edit mode, and toggle

selection on for the entire model by pressing the A key. Use the Subdivide Smooth

tool to add more geometry and to round out the shape of the character. You access

this tool by pressing W and choosing Subdivide Smooth, as shown in Figure 3.32.

Use the default subdivision value. The result is shown in Figure 3.33. The additional

geometry will help the model maintain its shape better when a Subsurf modifier is

added.

Figure 3.31

Putting the
duplicated mesh

 on a new layer

Modeling with Blender  ■   49

	 2.	 In the Modifiers panel in the Editing buttons area (the same place you added the Mir-

ror modifier), choose Subsurf from the Add Modifier drop-down menu and add a Sub-

surf modifier, as shown in Figure 3.34. You can leave all the default values as they are.

After adding the Subsurf modifier, locate the Links and Materials panel and click Set

Smooth, as shown in Figure 3.35, to set the surface lighting on the model to smooth.

Set Smooth works on only selected faces, so be sure that the entire model is selected.

Figure 3.32

Subdividing the mesh

Figure 3.33

The subdivided mesh

Figure 3.34

Adding a Subsurf modifier

Figure 3.35

The Set Smooth button

50  ■   Chapter 3 : Blender Modeling and Texturing Basics

	 3.	 Next, we’ll model a belt for the character, just for the sake of adding a bit more

detail. Geometric details are brought out nicely by ambient occlusion, as you’ll see

in the next section, so this belt will make the ambient occlusion (AO) texture a bit

more interesting. To do this, you’ll need to

make a few cuts around the belt area. Press

Ctrl+R to activate the Loop Cut tool; then

hover your mouse over one of the edges

perpendicular to the loops you want to cut.

Roll the mouse wheel (or use the + key) to

turn the single cut into a double cut. You’ll

see two placement lines drawn in purple

to indicate where the cuts will be made, as

shown (in gray scale) in Figure 3.36. Press

the left mouse button to confirm the cut.

The resulting new geometry should appear

as shown in Figure 3.37. Flatten each of the

two new loops, as shown in Figure 3.38. First

press the A key to deselect all vertices, then

select the loop to flatten by holding down Alt and right-clicking on any edge in the

loop. Press S to scale, followed by Z to constrain to the z-axis, followed by 0 to flat-

ten the edge, then Enter. Do this to both of the newly cut loops, which results in a

straight horizontal strip of faces, as shown in Figure 3.39.

Figure 3.36

Making a double cut
with the cut tool

Figure 3.37

The newly cut loops

Modeling with Blender  ■   51

	 4.	 Select the face loop by selecting one edge loop (Alt+right-click) and then selecting the

other edge loop (Shift+Alt+click). With the face loop of the belt selected, press the

E key and choose Region to extrude the belt shape, as shown in Figure 3.40. Cancel

out of moving the extruded vertices by pressing the right mouse button immediately

after extruding. Press Alt+S and use the mouse to inflate the faces slightly, as shown

in Figure 3.41. Inflate works differently from simply scaling the mesh. When a mesh

Figure 3.38

Flattening the new
loops vertically

Figure 3.39

The face loop to
extrude a belt

52  ■   Chapter 3 : Blender Modeling and Texturing Basics

is inflated, each face expands only in the direction of its own normal. That is to say,

faces move in the direction that they are facing rather than scaling in all directions.

	 5.	 Extrude again with the E key, as shown in Figure 3.42, and once again cancel the

transformation by pressing the right mouse button. Inflate again with Alt+S to give

the belt its full thickness, as shown in Figure 3.43. Note that the Subsurf modifier

has the effect of rounding off shapes. If a subsurfaced shape is too round or puffy-

looking, the solution is to add more geometry to hold the shape in place. Do that by

extruding one more time and inflating just slightly to give the belt a f lat surface, as

shown in Figure 3.44.

Figure 3.40

Extruding the
region for the belt

Figure 3.41

Slightly inflating the
extruded region

Modeling with Blender  ■   53

Figure 3.42

Extruding again

Figure 3.43

Inflating the
belt region

Figure 3.44

Extruding and
inflating to define
the belt’s shape

54  ■   Chapter 3 : Blender Modeling and Texturing Basics

	 6.	 You’re finished with the mesh modeling, so you can now apply the Mirror modifier

by switching back to Object mode with the Tab key and then pressing the Apply but-

ton shown in Figure 3.45. Applying a modifier makes the modified mesh “real” and

deletes the modifier. When you apply the Mirror modifier, the resulting mesh (in

Object mode) will appear as shown in Figure 3.46.

Now that you’ve completed the modeling of the mesh, the next step is to create a tex-

ture for the mesh. The texture will include an ambient occlusion effect, which is the sub-

ject of the next section.

Baking a Smooth AO Texture
Ambient occlusion (AO) is a lighting effect that is calculated entirely from the geometry

of a mesh. The idea behind AO is that, regardless of lighting conditions, certain parts of

an object are likely to receive more light than others. Broad, outward-facing surfaces are

usually well lit, whereas nooks, crannies, and corners tend to be occluded. Since these

factors are dependent only on the shape of the mesh, AO can be calculated without refer-

ence to lights. The result is a highly diffuse (soft) lighting effect that can be used in con-

junction with a wide variety of other lighting effects.

AO takes a comparatively long time to calculate and even the faster variations of AO

are usually too slow to be calculated for real-time uses. In Blender, it is possible to bake

the AO effect to a texture. This means that it can be calculated once, rendered to an

image, and rendered quickly after that (image textures are quick to render).

Figure 3.45

Applying the Mirror modifier

Figure 3.46

The finished mesh

Baking a Smooth AO Texture  ■   55

To bake an AO effect to your model, follow

these steps:

	 1.	 The first step in texturing a mesh is to UV

unwrap the surface geometry of the mesh.

This means to create a 2D representation

of the mesh that can be made to align with

an image texture. To do this, you need to

indicate where the 3D surface should split

in order to be flattened out. This is done

by marking seams. For this model, seam

marking is very simple. You’ll just make

a single loop seam that divides the front

of the model from the back of the model.

Enter Edit mode and select the loop, as

shown in Figure 3.47, by holding down

Alt and right-clicking on any edge in the

seam. With the edge selected, mark the seam

by pressing Ctrl+E to bring up the Edge

menu and choosing Mark Seam, as shown

in Figure 3.48. The seam will show up

highlighted in orange.

	 2.	 To perform UV unwrapping on a model, at least

one UV texture slot must be created for the

model. Add a UV texture slot to the model by

clicking the New button to the right of the UV

Texture label in the Mesh panel of the Editing

buttons, as shown in Figure 3.49. The UV Tex-

ture slot will be displayed on the same panel, as

shown in Figure 3.50.

Figure 3.47

Selecting the edge
loop around the
character

Figure 3.48

Marking the seam

Figure 3.49

Adding a new UV texture

Figure 3.50

The new UV texture slot

56  ■   Chapter 3 : Blender Modeling and Texturing Basics

	 3.	 To open a UV/Image editor when in the default desktop configuration, move your

mouse over the horizontal border of the 3D Viewport, right-click, and choose Split

Area, as shown in Figure 3.51. In the newly created window, choose UV/Image Editor

from the Window Type menu in the corner of the header, as shown in Figure 3.52.

	 4.	 Be sure that you are in Edit mode

and the entire model is selected.

(Use the A key to toggle selection of

all vertices.) Put your mouse over

the UV/Image editor, and press the

E key to unwrap the mesh. Click

Unwrap in the pop-up menu. The

mesh should unwrap into two

islands representing the front and

the back of the mesh, as shown

in Figure 3.53. The layout of the

unwrapping may be different than

shown here, but it should be roughly

similar. If the unwrapping looks

drastically different, it may be that

your model’s topology is different

from what was described in the pre-

vious section. Go back and fix your

model if necessary.

Figure 3.52

Switching to a UV/Image
Editor window type

Figure 3.51

Splitting the 3D View

Figure 3.53

The UV unwrapping in the UV/Image editor

Baking a Smooth AO Texture  ■   57

	 5.	 From the Image menu in the UV/Image editor

header, select New, as shown in Figure 3.54. A

dialog box will pop up where you can enter the

settings for the image. Enter 512 for the Width

and the Height fields; choose UV Test Grid, as

shown in Figure 3.55; and click OK. This will

generate an image texture and display it in the

UV/Image editor, as shown in Figure 3.56. You can see how

the texture maps onto your 3D object by choosing Textured

in the Draw Type drop-down menu in the header of the 3D

Viewport, as shown in Figure 3.57. When you do this, the

mesh will be drawn as shown in Figure 3.58, and you can

see exactly how the image texture is applied to the surface.

Figure 3.54

Creating a new
image

Figure 3.55

New Image settings

Figure 3.56

The test grid texture

Figure 3.57

Selecting textured draw type

Figure 3.58

Mesh displayed in textured draw type

58  ■   Chapter 3 : Blender Modeling and Texturing Basics

	 6.	 Enter the World buttons subcontext of the Shading buttons context by either clicking

on the icon followed by the icon, or by pressing the F5 key four times. In the

Amb Occ tab, click the Ambient Occlusion button to activate AO, as shown in Fig-

ure 3.59. You can leave all the default settings as they are.

	 7.	 Navigate to the Render subcontext of the Scene buttons context by clicking on the

 icon followed by the icon, or by pressing F10. In the Bake panel, choose

Ambient Occlusion and Normalized, as shown in Figure 3.60. Baking textures is

closely analogous to rendering, except that it “renders” to a texture on the surface of

the object in 3D space rather than to a final image of the scene. When only Ambient

Occlusion is selected, only the AO values are rendered to that texture. The Normal-

ized option sets the value of the brightest part of the texture to white and the darkest

part of the texture to black, so that the final texture ranges across the full grayscale

spectrum rather than just between two middling grays. Click the Bake button to

bake the texture, and wait for the AO texture to render completely. The image in the

UV/Image editor will be redrawn to look something like Figure 3.61. When the bak-

ing ends, save this image as a

PNG file from the Image menu

in the header. Don’t forget where

you’ve saved this file. Tab into

Object mode. Your 3D object

should look something like Fig-

ure 3.62. You should save your

file (with the extension .blend)

by choosing File ➔ Save if you

haven’t done so already.

Figure 3.59

Turning on ambient
occlusion

Figure 3.60

Baking AO to the
texture

Creating a Finished Texture with GIMP  ■   59

Now you’ve got a UV-mapped 3D object with a nicely rendered ambient occlusion tex-

ture. In the next section, you’ll step out of Blender briefly to complete the texturing with

the GIMP 2D image editing application.

Creating a Finished Texture with GIMP
As you can see, UV texturing is all about the mapping between a 2D texture and a 3D

object. Blender has some nice tools for editing these textures directly. (See the online

manual for the Texture Paint functionality for more information on this.) In general,

however, you’re better off using a dedicated 2D image editor for your texture work. The

commercial standard application for this is Photoshop, and the open source standard is

GIMP. For the purposes of 3D texture work, I don’t know of any real advantages one has

over the other, so the free GIMP is the obvious choice for me. Before you work through

this section, you will need to download and install GIMP from www.gimp.org. There are

ports of GIMP available for all major operating systems.

Before you fire up GIMP, there’s one more thing you need to do in Blender. In the

UV/Image editor header, from the UVs menu, select Scripts ➔ Save UV Face Layout, as

shown in Figure 3.63. The default values should be fine, so leave them as they are. This

will open a file browser for you to choose where you wish to save the exported image. By

Figure 3.61

The baked AO texture

Figure 3.62

The model with AO baked on

http://www.gimp.org

60  ■   Chapter 3 : Blender Modeling and Texturing Basics

default, it will export a Targa file showing the UV layout. Make a note of where you save

this file. The file will be named automatically after the name of your blend file and the

name of the mesh object, separated by an underscore. It will be saved to a TGA file, which

can be opened by GIMP. Note that TGA files cannot typically be viewed as images in the

Windows preview.

Once you’ve got that file saved, you’re ready to start GIMP and follow these steps to

create the finished texture for your model:

	 1.	 Open the AO texture file you saved using GIMP. Make sure that the layers dialog

box is visible by selecting Windows ➔ Dockable Dialogs ➔ Layers. The GIMP interface

should look something like Figure 3.64. The default name for the first layer is Back-

ground, so this is the name of the layer that contains the AO texture image for now.

Figure 3.63

Saving the
UV face layout

Figure 3.64

Opening the
AO texture in GIMP

Creating a Finished Texture with GIMP  ■   61

	 2.	 Open the image file with the UV face layout as a

layer. Do so by pressing Ctrl+Alt+O or by choosing

Open As Layers from the File menu, as shown in Fig-

ure 3.65. The GIMP file will now appear as shown in

Figure 3.66, with the two images stacked one on top

of the other in the Layers dialog window.

By default, layers are displayed in Normal layer mode, which in this case means that

the top layer is drawn as an opaque image over the lower layer. We want to use the

UV face layout as a reference while working on other layers, so it’s necessary to use

a different layer mode that leaves the lower layers visible. Left-click on the top layer

(the UV face layout) to select

it; then choose Divide from the

Mode drop-down menu. This

will cause the black lines of the

layer to show up drawn in white

and the white areas of the layer to

be transparent so that the lower

layer is visible, as you can see in

Figure 3.67.

	 3.	 You’ll do the coloring for the

texture on still another layer. To

create a new layer, click the icon

indicated in Figure 3.68. In the

New Layer dialog box, give the

layer the name Color, as shown

Figure 3.65

Opening a file as a
layer in GIMP

Figure 3.66

The two layers in
Normal layer mode

Figure 3.67

The UV layer in
Divide mode

62  ■   Chapter 3 : Blender Modeling and Texturing Basics

in Figure 3.69. Check White for the Layer Fill Type and then click OK. The new layer

will appear above whatever layer had been selected when you added it. Using your

mouse, drag the new layer to the bottom, as shown in Figure 3.70.

Figure 3.68

Adding a new layer

Figure 3.69

The New Layer dialog box

Figure 3.70

Dragging the new layer to the bottom

Creating a Finished Texture with GIMP  ■   63

	 4.	 Now the Color layer is obscured behind

the AO texture layer (still called Back-

ground). Select the AO texture layer and

change the mode to Multiply, as shown

in Figure 3.71. You won’t notice any dif-

ference in the way the image is displayed

at first because the bottom layer is all

white. However, when you start adding

color, the effect of the Multiply layer

mode will be clear.

	 5.	 Select the Color layer and choose the

Bucket Fill tool from the Toolbox, as

shown in Figure 3.72. Click the Fore-

ground Color button shown in Fig-

ure 3.73 to open the Color Picker dialog

box shown in Figure 3.74. Set the fore-

ground color to solid green (or whatever

color you like for your alien). Then

simply click anywhere on the image to

bucket-fill the layer with this color, as

shown in Figure 3.75 (in gray scale, of course).

Figure 3.71

Setting the AO
(Background) layer
to Multiply mode

Figure 3.72

The Bucket Fill tool

Figure 3.73

The Foreground Color button

Figure 3.74

The Color Picker dialog box

64  ■   Chapter 3 : Blender Modeling and Texturing Basics

	 6.	 Select the Lasso tool on the Toolbox, as shown in Figure 3.76. Using a series of mouse

clicks, surround the belt area with the Lasso tool, as shown in Figure 3.77. When you’ve

closed the lassoed area around the belt by double-clicking, return to the Bucket Fill

tool, select a different foreground color (I’m using solid yellow), and do a bucket fill

into the belt area, as shown in Figure 3.78. After this, you can add whatever other

decorative colored parts you like. I’ve added a pair of white eyes.

Figure 3.75

Bucket-filling
the layer with a

solid color

Figure 3.76

Selecting the Lasso tool

Figure 3.77

Enclosing the belt area with the Lasso tool

Creating a Finished Texture with GIMP  ■   65

	 7.	 Before you export the final image, you need to

make the UV face layout layer invisible. Layer vis-

ibility is toggled on and off using the eye-shaped

icon to the left of the thumbnail in the Layers

dialog box. Toggle the UV layer off, as shown in

Figure 3.79. Notice that I’ve renamed the layers

UV, AO, and Color to be more intuitive. When

you have set the UV layer to be invisible, simply

save the file as a PNG file by choosing File ➔ Save

As; then name the file texture.tif. Choose Merge

Visible Layers, and leave the defaults for the

second dialog box that comes up. This will auto-

matically export the image to PNG format. Note

that layers will be lost in this saved image. If you

plan to go back and do more editing with sepa-

rated layers, save the file as an XCF file, which

is GIMP’s native file format. Your finished PNG

image file will look something like Figure 3.80.

Figure 3.78

Filling the belt
with a solid color

Figure 3.79

Setting the UV layer
to be invisible

66  ■   Chapter 3 : Blender Modeling and Texturing Basics

	 8.	 Now let’s return to Blender. You want to use the newly created PNG file you just

exported from GIMP as the object’s texture, rather than the previously baked AO

texture. To do this, simply choose Replace from the Image menu in the UV/Image

editor header, as shown in Figure 3.81. This will open a file browser. Navigate to the

texture file you just created in GIMP and select it. The new texture will immediately

replace the old one in the model, as shown in Figure 3.82.

Figure 3.80

The final
color texture

Figure 3.81

Replacing the
active texture

Figure 3.82

The textured model

Creating a Finished Texture with GIMP  ■   67

	 9.	 Next, you’ll assign the model a material. Doing so will

enable it to be rendered and its texture to be baked onto

the low-poly model later. A material is also necessary

in some cases for exporting a textured mesh. To add a

material, first enter the Material buttons subcontext of

the Shading buttons context by clicking the icon fol-

lowed by the red icon, or by pressing F5. If there is

no material already associated with the object, add a new

material by clicking Add New in the Links And Pipeline

panel, as shown in Figure 3.83.

	10.	 In the Texture panel of the Material buttons, click Add

New to assign a texture to the material, as shown in Figure 3.84. A texture slot

labeled Tex will be created automatically. Enter the Texture subcontext of the Shad-

ing buttons by clicking the icon. Select Image from the Texture Type drop-down

menu in the Texture panel, shown in Figure 3.85.

Figure 3.83

Adding a material

Figure 3.84

Adding a texture
to the material

Figure 3.85

Selecting the
texture type

68  ■   Chapter 3 : Blender Modeling and Texturing Basics

	11.	 Load the texture.tif file in the field on the Image panel of the texture, as shown in

Figure 3.86. Aside from this, you can leave the default values for the rest of the texture

settings as shown in the figure. Return to the Material buttons, and set the options for

the material as shown in Figure 3.87. Set the material to Shadeless in the Material tab

of the Material panel and set the Map Input value to UV, as indicated in that figure.

When you’ve finished this, save your file and take a break. The higher-poly model is

finished. In the next chapter, you’ll turn your attention back to the low-poly model to

prepare it for use as an animated element in an AR application.

Figure 3.86

Settings for the
Image texture

Figure 3.87

Settings for the
textured material

C hap te r 4

Creating a Low-Poly
Animated Character

Rigging and animating  in Blender are important skills to have

if you want to add animated 3D objects to your AR applications. In this chapter, you’ll

learn how to set up a minimal character rig and walk cycle. However, many of the pro-

gramming environments you’ll deal with are restrictive in terms of the size and com-

plexity of 3D assets. For this reason, before you begin animating, you’ll see how to create

a simplified version of the model you made in Chapter 3, “Blender Modeling and Textur-

ing Basics,” that is suitable for animating in low-memory situations.

In this chapter, you’ll learn about the following topics:

Texturing your low-poly alien■■

Rigging the model■■

Keying a simple walk cycle■■

70  ■   Chapter 4 : Creating a Low-Poly Animated Character

Texturing Your Low-Poly Alien
In Chapter 3, you created a finished, fairly refined (albeit simple) character model com-

plete with subsurfacing, some detailed modeling (the belt), and a nice texture including

baked ambient occlusion. Unfortunately, that’s a bit more model than the Processing

3D environment can handle. Subdivision surfaces are not supported in Processing, and

the number of vertices of that model (especially if you applied the Subsurf modifier) can

bring Processing to its knees, particularly with the overhead required by the AR process-

ing. Resources are also precious on mobile platforms such as Android (which you’ll take

a look at in Chapter 10, “Setting up NyARToolkit for Android”)—and this isn’t even with

animation. As you’ll see in Chapter 5, “3D Programming in Processing,” the approach

you’ll take to 3D animation in Processing 3D involves importing a separate 3D model

file for each frame of the animation. A model with too many vertices will cause real

problems.

Fortunately, you’ve already modeled a low-poly version of your character, which

should be sufficiently lightweight to be used in the various programming environments

described in this book. For most of the examples in the book, I’ve used a super low-poly

version of my own Shootin’ Annie character. The super-low-poly model was based on a

higher-poly model, as you can see in Figure 4.1. The texture of the low-poly model is also

lower resolution and, as you can see, it’s clearly suitable only for small displays. The low-

resolution texture was created (almost) automatically by baking the texture straight from

the higher-poly model onto the low-poly model. In this chapter, you’ll do the same thing

with the models you created in Chapter 3, before keying a quick-and-dirty walk cycle.

Figure 4.1

The original
Shootin’ Annie
model and the

super-low-poly
version

Texturing Your Low-Poly Alien  ■   71

To texture your low-poly alien character, follow these steps; remember to save your

work frequently:

	 1.	 If you don’t have your blend file from

Chapter 3 open already, open it now. In

the 3D Viewport, switch to the layer where

you placed your low-poly model using the

layer buttons in the header (). You

should see only the low-poly model in the

3D Viewport, as shown in Figure 4.2. Right-

click the object, and then go to the Mirror

modifier on the object and click Apply, as

shown in Figure 4.3.

	 2.	 With the model selected, enter Edit mode

by pressing the Tab key or by choosing Edit

mode from the drop-down menu in the 3D

Viewport header. Just as you did with the

higher-poly model in Chapter 3, select the

edge around the model separating the front

of the model from the rear of the model by

Alt+right-clicking on an edge in the loop.

Press Ctrl+E, and choose Mark Seam

from the Edge Specials menu, as shown in

Figure 4.4.

Figure 4.2

The low-poly model
from Chapter 3

Figure 4.3

Applying the Mirror modifier

Figure 4.4

Marking a seam

72  ■   Chapter 4 : Creating a Low-Poly Animated Character

	 3.	 Press the A key to select the entire model. Add a UV texture as shown in Figure 4.5.

In the UV/Image editor, unwrap the mesh by pressing E just as you did with the

higher-poly model in Chapter 3. Create a new image by choosing New from the

Image drop-down in the UV/Image editor header. Set the values for the new image

in the dialog box as shown in Figure 4.6. Be sure to click UV Test Grid. Note that

the dimensions are 256×256, which is lower resolution than the image you used to

texture the higher-poly model. The new image should appear in the UV/Image editor

and on the model, as shown in Figure 4.7.

	 4.	 Hold down the Shift key and click on the Layer 1 button in the header to display the

contents of the layers that contain both the higher- and low-poly models, as shown in

Figure 4.8. First select the higher-poly mesh, and then hold down the Shift key and

select the low-poly mesh. This makes the low-poly mesh the active object (the last

single selected object is always the active object).

Figure 4.5

Adding a UV texture

Figure 4.6

Settings for the new
image

Figure 4.7

Adding a new image

Texturing Your Low-Poly Alien  ■   73

	 5.	 On the Bake panel of the Render but-

tons, select Textures and Selected To

Active, as shown in Figure 4.9; then

click Bake. As the option name suggests,

doing so redraws the texture from the

selected object onto the texture on the

active object, trying to map one texture

to the other as directly as possible. The

resulting texture on the low-poly model

(after the higher-poly model has once

again been put away on an unseen layer)

is shown in Figure 4.10.

Figure 4.8

Looking at both
models at once

Figure 4.9

Baking textures
from Selected To
Active

Figure 4.10

The low-poly model
textured

74  ■   Chapter 4 : Creating a Low-Poly Animated Character

As you can see, the resulting textured model is far from a perfect re-creation of the

higher-poly textured model. But the smoothed AO effect is present, and the detail of the

belt is reasonably mapped to the flat geometry in a convincing manner. For a model that

uses minimal resources, this is a decent alternative to the higher-poly model. Follow the

same steps to add a textured material to this model as you did at the end of Chapter 3 to

add a textured material to the higher-poly model.

Figure 4.11 shows material settings for the new material for the low-poly model, and

Figure 4.12 shows texture settings with the newly baked texture UV-mapped to the new

material. For details on how to set up the material and texture, review Chapter 3.
Figure 4.11

Material settings for
the low-poly model

Figure 4.12

Texture settings for
the low-poly model

Rigging the Model  ■   75

Rigging the Model
The typical way to do character animation in Blender is to create an armature, which is

then used to deform the mesh into desired poses. An armature is analogous to the skel-

eton of the character, and in fact, its components are called bones. Armature bones are

rigid and can be connected at joints. Each bone has some of influence on certain vertices

in the mesh, and depending on these levels of influence, the vertices move when the bone

is moved for posing.

Advanced armature setups, or rigs, can be complex. They can be designed to enable

extremely versatile posing, or constrained to allow only realistic poses. For high-quality

rigs, a great deal of attention is paid to the interface of the rig for the animator. Such a rig

can have hundreds of bones serving a wide variety of functions, some of which deform

the mesh directly, some of which are visible to the animator, and some of which perform

various other functions.

For the purposes of this book, however, the kind of

rig we want is almost the opposite of this situation. The rig

we use here should be simple and minimal. It should be

capable of producing the brief animation we’ll be export-

ing, and it needn’t be capable of much more than that,

making it an ideal exercise for first-time riggers. To rig

the model with such an armature, follow these steps:

	 1.	 In Object mode, add a new Armature object by press-

ing Shift+A and choosing Add ➔ Armature, as shown

in Figure 4.13. The new object will appear in the 3D

Viewport at the location of the 3D cursor. To place

it into the center of the space, press Alt+G and click

Clear Location in the dialog box immediately after

adding the object (don’t worry if you can’t see the

Armature object at this point).

	 2.	 If you don’t see the Armature object, it’s probably

because it is positioned inside the mesh. To be able to see

the armature, click the Editing button and in the Armature

panel select X-Ray under Editing Options, as shown in Fig-

ure 4.14. In the same panel, select X-Axis Mirror to enable

automatic symmetrical editing for the armature. The first

bone of the armature should now be visible, as shown in

Figure 4.15.

Figure 4.13

Adding an Armature
object

Figure 4.14

Armature settings

76  ■   Chapter 4 : Creating a Low-Poly Animated Character

	 3.	 Make sure the armature is selected by right-clicking on it. With the mouse over the

3D Viewport, press Tab to enter Edit mode (or choose Edit mode from the drop-

down menu in the 3D Viewport header). Press Shift+E to do a mirrored extrude, and

draw the tips of the extruded bones to the shoulder area of the character, as shown

in Figure 4.16. Press E to do an ordinary extrude from the shoulder to the elbow area

(all child bones of the originally mirror-extruded bones will be mirror-edited auto-

matically). Press E once more to extrude the forearms from the elbows to create the

arms, as shown in Figure 4.17.

Figure 4.15

The mesh and
the armature

Figure 4.16

Mirror-extruding shoulders

Figure 4.17

Extruding arms

Rigging the Model  ■   77

	 4.	 Right-click on the tip of the first bone in the

armature. Press the E key followed by the Z key

to extrude a bone directly upward to the base of

the head, and then press the E key again, followed

by the Z key again, to extrude another bone to the

top of the head, as shown in Figure 4.18.

	 5.	 Right-click on the base (the small sphere at the

thick end) of the first bone; then press Shift+E

to do a mirrored extrude to extrude the hips, as

shown in Figure 4.19. Because you extruded these

bones from the base of the first bone rather than

from the tip, they are not automatically parented

to the first bone. It would be better to have them

parented to this bone so that the whole armature

will move when the first bone moves. Select the

hip bone you just extruded by right-clicking on

the middle of the bone, and go to the Armature

Bones panel in the Editing buttons area. In the

drop-down menu to the right of the Child Of

label, choose Bone, as shown in Figure 4.20.

Then select the tip of the hip bone again and

use the E key to continue to extrude the rest of

the legs, as shown in Figure 4.21.

Figure 4.18

Extruding the neck and head

Figure 4.19

Extruding the hips

Figure 4.20

Parenting the hip bone to the back bone

Figure 4.21

Extruding legs

78  ■   Chapter 4 : Creating a Low-Poly Animated Character

	 6.	 Because the armature was modeled entirely in Front view, it is f lat. The character

mesh is not perfectly flat; rather, it is bent at the arms and knees. To make the arma-

ture better conform to the character’s shape, first select the elbow joint by clicking on

the small sphere between the upper and lower bones. To get a better viewing angle,

either press 3 on the numeric keypad or rotate the view with the middle mouse but-

ton so that you can see the model from the side. Press G followed by Y and move the

elbow joint back to match the shape of the mesh, as shown in Figure 4.22. Press the

left mouse button to confirm the change. Do the same in the opposite direction for

the knees, as shown in Figure 4.23.

	 7.	 Before you attach the armature to the mesh and begin animating, there’s one more

step you should always take. Select all of the bones by pressing the A key and press

Ctrl+N to recalculate the bone roll angles. Choose Clear Roll (Z-Axis Up), as shown

in Figure 4.24. Doing so will fix bone roll inconsistencies that often arise during

armature editing. If you don’t recalculate the bone roll angles, you can find your ani-

mations going haywire, so this is an important step.

	 8.	 Press Tab to enter Object mode. Right-click on the Mesh object to select it; then hold

down the Shift key and right-click on the Armature object. Press Ctrl+P to bring

up the Make Parent To menu and choose Armature, as shown in Figure 4.25. Next

you’ll see the Create Vertex Groups menu. Choose Create From Bone Heat, as shown

in Figure 4.26. This automatically associates vertices in the mesh to the appropriate

bones. In a model like the alien here, you shouldn’t need to do any further modifica-

tion of the bone influences.

Figure 4.22

Moving the elbows back

Figure 4.23

Moving the knees forward

Keying a Simple Walk Cycle  ■   79

The model is now fully rigged. You can test it to make sure the

mesh is deforming nicely by posing the armature. To do so, select the

Armature object and choose Pose Mode from the Mode drop-down

menu in the 3D Viewport header, as shown in Figure 4.27. You can

now select and rotate bones as though you were posing a doll or

puppet, and the mesh should deform accordingly.

Keying a Simple Walk Cycle
Animation in Blender is a matter of placing 3D elements, keying their placement to fix it

at a particular point on the timeline, and then changing their placement and keying it

differently at a different point in time. For character animation, the 3D elements used are

typically armature bones. You pose the armature, key the pose for the point in time, and

then key other poses at different points in time.

There are several editors in Blender that are used in various ways to look at animation

values over time. For simple animations like the one you’ll be doing in this section, the

Action editor is the main editor you will use.

Figure 4.24

Recalculating bone roll angles

Figure 4.25

Parenting the mesh to the armature

Figure 4.26

Creating vertex
groups from
bone heat

Figure 4.27

Entering Pose mode

80  ■   Chapter 4 : Creating a Low-Poly Animated Character

To animate a simple walk cycle using the Action editor, follow these steps:

	 1.	 Open an Action editor window. You can do this in the same window area where you

previously were using the UV/Image editor, because you will no longer need the UV/

Image editor. Choose Action Editor from the Window Type menu in the left corner

of the header, as shown in Figure 4.28. Select Add New from the drop-down menu

shown in Figure 4.29. Give the new action a meaningful name by entering Walk in

the AC field on the Action editor, as shown in Figure 4.30.

	 2.	 Split the Action editor window by right-clicking over the

window’s vertical border and choosing Split Area, as shown

in Figure 4.31. Make the second window a low, horizontal

shape, and choose Timeline from the Window Type menu,

as shown in Figure 4.32. In the Timeline window, enter 20

in the End field to set the animation to loop after 20 frames.

Enter 1 in the field to the right to set the current frame to 1,

as shown in Figure 4.33.

Figure 4.28

Opening an Action
editor

Figure 4.29

Adding a new action

Figure 4.30

The Action editor window

Figure 4.31

Splitting the Action
editor

Keying a Simple Walk Cycle  ■   81

	 3.	 With the armature still in Pose mode, select the upper bone of the left leg and press

the R key to rotate it, followed by the X key to constrain the rotation to the global

x-axis. With the mouse, rotate the leg forward, as shown in Figure 4.34, and then

confirm the rotation with the left mouse button. Enter Side view by pressing 3 on the

numeric keypad. Select the right leg and rotate it to the rear, as shown in Figure 4.35.

Figure 4.32

Opening a Timeline

Figure 4.33

A Timeline window

Figure 4.34

Rotating the left leg forward

Figure 4.35

Rotating the right leg back

82  ■   Chapter 4 : Creating a Low-Poly Animated Character

	 4.	 Do the same, but in reverse, with the arms. Select the left arm and rotate it back

around the x-axis, as shown in Figure 4.36 (press the R key followed by the X key,

and then press the left mouse button to confirm). Rotate the right arm forward in

the same manner, as shown in Figure 4.37.

	 5.	 Select each of the four bones you just posed by holding down the Shift key and right-

clicking on each one. Press the I key to bring up the Insert Key menu and key the

bones’ location and rotation by choosing the LocRot entry in the menu, as shown in

Figure 4.38. You should see channels for each bone appear in the Action editor with

keys on frame 1 represented by yellow diamonds, as shown in Figure 4.39.

Figure 4.36

Rotating the left arm back

Figure 4.37

Rotating the right arm forward

Figure 4.38

Keying the
four bones

Keying a Simple Walk Cycle  ■   83

	 6.	 Advance 10 frames, as shown in Figure 4.40, by pressing the up arrow key on your

keyboard (or by pressing the right arrow key 10 times). You want to reverse the walk-

ing pose for this frame, and there’s a simple way to do that. With the four posed

bones still selected, click the button in the 3D Viewport. This “copies” the poses

for the selected bones to a special type of pose clipboard. You can then “paste” the

pose in reverse by clicking the icon. Do so, and then key the pose by pressing I

and choosing LocRot. They keys should appear as shown in Figure 4.41.

Figure 4.39

The keys in the
Action editor

Figure 4.40

Advancing
10 frames

Figure 4.41

Reversing the pose

84  ■   Chapter 4 : Creating a Low-Poly Animated Character

	 7.	 To make the walk cycle repeat frame 20 smoothly, you want to copy the poses of

frame 1 to frame 21. Do this by first pressing the A key to deselect all keyframes.

Then, box-select the first set of keyframes with the B key, as shown in Figure 4.42.

Press Shift+D to duplicate the selected keyframes and move them. Hold down

the Ctrl key while you move the keyframes to constrain them to whole num-

bered frames, and offset them 20 frames (DeltaX: 20 in the header), as shown in

Figure 4.43.

You can now press the triangular play icon in the Timeline to play back the full ani-

mation. It’s as simple a walk cycle as you can get, but if you’ve managed to get it looking

good, then you’ve done well as a Blender beginner.

To use the model or animation in an AR application, you’ll need to export the object

to the appropriate format. Which format you choose depends on the environment in

which it will be used. How you export the animated model also depends on which

Blender version you’re using. (Although this chapter has dealt with Blender 2.49, there

are some cases already where you’re better off opening what you’ve done here directly in

Blender 2.58 and exporting from there.)

Figure 4.42

Box-selecting
the first set of

 keyframes

Figure 4.43

Duplicating the
keyframes and

moving them
20 frames

Keying a Simple Walk Cycle  ■   85

The work you’ll be doing in Processing in Chapter 5 and in Chapter 6, “Augmented

Reality with Processing,” requires OBJ files. This is a good example of why I chose to

start with Blender 2.49—as of this writing, Blender 2.58’s OBJ export functionality does

not yet support animated meshes. To export your animated model in OBJ format, select

the model object and choose File ➔ Export ➔ Wavefront (.obj) from the File menu at the

top of your Blender work area, as shown in Figure 4.44. Choose a directory to which

you’ll export the files. There will be a total of 40 files written: one OBJ file for each frame

and one MTL (material) file for each OBJ file. In the OBJ Export dialog box, choose

Animation, Triangulate, and Normals and leave the other values at their default settings,

as shown in Figure 4.45.
Figure 4.44

Selecting the
OBJ exporter

Figure 4.45

The OBJ Export
dialog box

86  ■   Chapter 4 : Creating a Low-Poly Animated Character

All the information about file-format exporting you need to know for this book is

collected in Appendix B, so if you’re unsure about which file format to use for an envi-

ronment or how best to export to that file format, refer to that appendix.

Now you should be ready to get back to Processing and begin to play around with your

animated Blender model in the Processing environment.

C hap te r 5

3D Programming in Processing

In Chapter 2,  “Introduction to Processing,” you learned the basics of work-

ing with Processing in two dimensions. For integrating virtual content into the 3D space

of live-action video, as in AR, it’s necessary to use Processing’s 3D programming capabili-

ties. In this chapter, you’ll be introduced to 3D programming and you’ll learn how to

work with 3D assets similar to the ones you created in Chapters 3, “Blender Modeling

and Texturing Basics,” and 4, “Creating a Low-Poly Animated Character.”

In this chapter, you’ll learn about the following topics:

The P3D and OpenGL environments■■

Working with OBJ files■■

Simple animation with OBJ arrays■■

88  ■   Chapter 5 : 3D Programming in Processing

The P3D and OpenGL Environments
Processing enables you to program in 3D using a selection of 3D environments. Process-

ing’s native 3D environment, P3D, is the simplest to work with and, if it suits your goals,

it’s the best place to start. If necessary (and for the purposes of this book, it is necessary),

you can also program using Processing’s integrated OpenGL environment.

3D Primitives
Just as when programming for 2D, you can use primitive shapes in the 3D environment.

In addition to the 2D primitives that can be used, there are two three-dimensional

primitives—sphere and box—for use exclusively in the 3D environment. Here is a very

basic example of a program using a 3D primitive:

void setup(){

 size(500, 500, P3D);

}

void draw() {

 background(255);

 sphere(100);

}

The first difference between this program and the programs you dealt with previously

is in the arguments to the size() function. In this case, note that there is a third argu-

ment, called P3D. This tells Processing to use the Processing 3D environment (P3D) and

treat the window as a view into a three-dimensional space.

The output of this program is shown in Figure 5.1. As you can see, the default drawing

mode, just as in 3D, uses the stroke option, resulting in a wireframe-style 3D rendering.

Furthermore, the sphere is centered at the upper-left corner of the window, at the origin

of the x and y coordinates. Unlike 2D primitives such as ellipses, there are no location

arguments for 3D-primitive functions. The only argument rep-

resents the radius of the sphere. This is because placing objects

in 3D works a bit differently than placing them in 2D.

Positioning Objects in Space

To control the location, rotation, or scale of a 3D object, you

must translate, rotate, or scale the frame of reference (model

coordinate space) in which the object is drawn. By default, the

origin of this coordinate space (which corresponds to the cen-

ter of the sphere object) is placed at the origin of the 2D space

(the corner of the window). To place the sphere in the middle

of the window, add a translate command as follows just before

the line where the sphere() function is called:

 translate(250, 250, 0);

Figure 5.1

A simple
3D program

The P3D and OpenGL Environments  ■   89

This command translates the origin to the middle of the window plane. The z coor-

dinate is the depth. The 0 value is the distance at which the object appears at exactly the

size (in pixels) that the radius argument determines. Below 0, the object moves deeper

into the scene and away from the viewer. With a z value above 0, the object moves closer

to the viewer and appears larger (see Figure 5.2).

Now try adding the boldface code shown here to your

program:
int y = -100;

void setup(){

 size(500, 500, P3D);

 noStroke();

}

void draw() {

 background(255);

 lights();

 translate(250, y, 0);

 sphere(100);

 y++;

 if(y > 600){

 y = -100;

 }

}

This added code does a few things. The y variable works

similarly to the example in Chapter 2, enabling the object to be animated along the

y-axis. Using this variable as the second argument to translate() and then incrementing

it causes the ball to drop from above the top of the window to off the bottom of the win-

dow. It should be clear by now how this works.

Lighting and Drawing Commands

The other new things are the noStroke() command and the

lights() command. The first turns off stroke drawing, so

the object is no longer displayed as a wireframe. The second

produces general-purpose, directionless lighting so that solid

3D objects can be seen. The result should look something like

Figure 5.3.

The lights() function is fine if all you want to do is be able

to see a 3D object, but it doesn’t allow much control over the

lighting conditions. Another alternative is to use directional

Figure 5.2

Translating the
sphere to the center

Figure 5.3

The solid lighted
sphere

90  ■   Chapter 5 : 3D Programming in Processing

lights. Add the boldface code that follows to see an example of how those work. (Note

that the call to lights() has been deleted.)

int y = -100;

float dirY;

float dirX;

void setup(){

 size(500, 500, P3D);

 noStroke();

 fill(255, 0, 255);

}

void draw() {

 background(255);

 if(mouseY <= y){

 dirY = -(1.0-(mouseY/float(y)));

 }else{

 dirY = float(mouseY-y)/float(height-y);

 }

 dirX = (mouseX / float(width) - 0.5) * 2;

 directionalLight(255, 255, 255, -dirX, -dirY, -0.5);

 translate(250, y, 0);

 sphere(100);

 y++;

 if(y > 600){

 y = -100;

 }

}

The first thing this code does is add two new variables, dirX and dirY. These will be

used to specify the x and y coordinates of the direction that the directional lights are

pointing. The light will be set to point away from the mouse cursor’s position to give

the effect of the light source coming from the mouse location. The equations for defin-

ing dirX and dirY result in a value range between –1 and 1. Note the arguments to the

directionalLight() function. The first three arguments determine the color of the light

(in this case white). The last three arguments are float values ranging from –1.0 to 1.0 for

each coordinate. These determine the component along each axis describing the direc-

tion of the light. Here, the light points away from the mouse along the x- and y-axes,

and it points away from the viewer (in the negative direction on the z-axis). The lines of

code above this argument calculate this value based on the location of the mouse and, in

the case of the y value, the location of the sphere in the window. Finally, note that in the

setup() function, a call to fill() has been added. This sets the fill color for primitives,

just as in the two-dimensional case. Here it means that the sphere is drawn in purple.

The result is shown, in gray scale, in Figure 5.4.

Figure 5.4

The ball with
directional light

The P3D and OpenGL Environments  ■   91

Working with OpenGL
The P3D environment conforms most closely to the kind of 3D programming that

Processing was meant to handle, doing well with fairly lightweight 3D content and pro-

viding intuitive controls. For this reason, in most cases you should consider it your first

choice for your 3D programming in Processing. However, certain libraries and tasks

require more powerful and flexible 3D functionality. For these cases, you should use the

Processing OpenGL library. Some of the libraries you’ll be using to do augmented reality

require this library, so from this point on, all examples will use OpenGL rather than P3D.

A few caveats are in order. As previously stated, Processing is a prototyping language

that is best suited for quickly creating interactive, executable demonstration software.

The Processing OpenGL environment is not a good substitute for an industrial-strength

OpenGL programming solution if you intend to create finished software for deployment.

The amount of 3D geometry that Processing can handle and the render speed that it can

produce can quickly become serious bottlenecks, and low-level OpenGL programming

is not well supported in Processing. OpenGL also makes certain assumptions about your

graphics hardware. If you have trouble, you may need to look into the specifications of

your own graphics-processing unit and ensure that the drivers from the manufacturer

are up-to-date.

Assuming there are no hardware problems, switching to OpenGL is very simple.

First, make sure that you have imported the OpenGL library. Do so by choosing Sketch ➔

Import Library ➔ OpenGL, as shown in Figure 5.5. (In Windows, the menu is positioned

along the top of the Processing window itself.) This will automatically add the following

line of code to your sketch:

import processing.opengl.*;

Of course, you can also type in this line of code directly

and the effect will be exactly the same.

Then, change the argument to the size() function call

from P3D to OPENGL (this is case-sensitive, so use all caps), as

shown here:
 size(500, 500, OPENGL);

In this example, the sketch should execute identically

when using OpenGL as it did for P3D. If it doesn’t, now is

the time to investigate your graphics card, and make sure

that it has OpenGL support.

Figure 5.5

Importing the
OpenGL library

92  ■   Chapter 5 : 3D Programming in Processing

Working with OBJ files
In the previous example, you created a very simple 3D scene with just a moving sphere.

In fact, Processing can handle only fairly simple 3D scenes. You wouldn’t want to use

Processing to try to create a 3D game, for example. However, it is possible to work with

more sophisticated models than just primitives, and you can even work with textured

models. The easiest way to do this is to use the OBJLoader library in Processing and

import 3D models from Wavefront OBJ files.

OBJ files are text-based files that describe the coordinates of vertices and the edges and

faces that connect the vertices. An OBJ file can be accompanied by a material file with

the .mtl extension, which represents material and texture-mapping information for the

object. The Processing OBJLoader library can handle these files as well.

Using OBJLoader
The OBJLoader library is not part of the standard Processing download. To use it, you

must download it and install it. You can get the library here:

http://code.google.com/p/saitoobjloader/downloads/list

You must download and extract the file. When you’ve extracted it, move the top-level

directory into the libraries subdirectory of your Processing directory. Processing typi-

cally creates your Processing directory automatically in the Documents (or My Documents)

directory. The Processing directory is the same directory where your sketches are stored

by default. If you haven’t used any third-party libraries yet, there won’t be a libraries

directory in your Processing directory, so you’ll have to create it. Now, look inside the

extracted directory. You should find four subdirectories: examples, library, reference,

and src. Under library, you will find a JAR file with the name of the library itself. Make

sure that the directory you placed in the libraries directory has exactly the same name

as this file (minus the .jar). In the case of OBJLoader version 023, the latest OBJLoader

version as of this writing, the directory is called OBJLoader_023 and the JAR file is called

simply OBJLoader.jar. You must rename the directory by deleting the _023 from the direc-

tory name; otherwise, Processing will not correctly find the library. Finally, if Processing

is running when you do all this, be sure to restart Processing after you’ve installed the

library.

In Appendix B, you can read in detail about how to export OBJ files from Blender. For

the next example, you can either use the OBJ file you created or you can find the OBJ file

sa.obj and corresponding sa.mtl files among the support files that accompany this book.

Start a new Processing sketch. Add the OpenGL library as you did in the previous section,

and add the OBJLoader in the same way. If you can’t find the OBJLoader library under

the Contributed portion of the Import Library menu option, then there was a problem

http://code.google.com/p/saitoobjloader/downloads/list

Working with OBJ files  ■   93

with the installation. Make sure the library is in the right place and that the directory has

the same name as the JAR file.

Copy the rest of the code as shown here (the first two lines should already have

appeared when you imported the libraries):
import processing.opengl.*;

import saito.objloader.*;

OBJModel model ;

float rotX, rotY;

void setup(){

 size(800, 600, OPENGL);

 model = new OBJModel(this, “sa.obj”, TRIANGLES);

 model.enableDebug();

 model.scale(80);

 model.translateToCenter();

 noStroke();

}

void draw(){

 background(200);

 lights();

 translate(width/2, height/2, 0);

 rotateX(rotY);

 rotateY(rotX);

 model.draw();

}

void mouseDragged(){

 rotX += (mouseX - pmouseX) * 0.01;

 rotY -= (mouseY - pmouseY) * 0.01;

}

If you run this code as is, you will get an error. You have not yet made the necessary

data files accessible to the sketch. Any time your Processing sketch depends on exter-

nal data files, whether they be images, text files, or 3D models, it is necessary to include

the files in the sketch’s data directory. The easy way to do this is simply to drag the

file icons directly into the sketch editor window. In this case, you need the OBJ file, the

accompanying material file, and the image file for the color texture of the material. This

means that you need to add the files sa.obj, sa.mtl, and shootinanniecolor.jpg, as shown

in Figure 5.6. When you do so, the three files will automatically be copied into the

data directory of your sketch directory. You can check that this is true by opening the

sketch directory by choosing Sketch ➔ Show Sketch Folder, as shown in Figure 5.7.

The sketch directory should open up in its own window, as shown in Figure 5.8. The

PDE file is the Processing sketch file itself, and as you can see, the other files are there

in the data directory.

94  ■   Chapter 5 : 3D Programming in Processing

Once you’ve added the data files, you can run the sketch and it should appear as shown

in Figure 5.9. You can rotate the object by dragging with your mouse.

Figure 5.6

Dragging data files
into the sketch

Figure 5.7

Opening the
sketch directory

Figure 5.8

The sketch directory
in the Finder

Working with OBJ files  ■   95

Let’s take a closer look at some of the new code that was introduced here. The first line

of code that might be unfamiliar is

OBJModel model ;

If you recall the discussion of classes and objects in Chapter 2, though, it should be

clear that we’re declaring a variable for an object of class OBJModel. You don’t need to

worry about defining the class, though. That’s taken care of by the OBJLoader library.

In the setup() function, you actually create the object called model. This is done with

the OBJModel constructor. You don’t need to worry much about the first and third argu-

ments here. The first argument simply associated the new object with the current sketch,

and the third argument ensures that the structural information in the OBJ file is inter-

preted as triangle data. The second argument is the name of your OBJ file:

 model = new OBJModel(this, “sa.obj”, TRIANGLES);

The next couple of lines call some methods related to the model object. Recall that the

syntax for methods is a period following the object name, followed by the method itself.

The first method called, enableDebug(), turns on debugging information for the object.

This will output text diagnostics to the Processing console at the bottom of the sketch

window. The second method scales the object. OBJ models exported from Blender will

generally appear small in the Processing space so, in this case, I’ve scaled the model up a

factor of 80 to fill the window. Finally, the translateToCenter() method is called to ensure

that the center of the space is calculated as the geometric center of the model. In this case,

Figure 5.9

The OBJ file in
your sketch

96  ■   Chapter 5 : 3D Programming in Processing

doing so has the effect of moving all the vertices of the model downward slightly, because

the original model, exported from Blender, has its origin at the feet of the model. Note

that this method does not place the model in the middle of the Processing window. The

origin of the 3D space is still in the upper-left corner of the window at this point:

 model.enableDebug();

 model.scale(80);

 model.translateToCenter();

The next few lines of code are from the draw() function. These are the transformation

functions that move the model into place. They need to be called each time the model is

drawn to the screen. Note that these functions are actually transforming the entire space

into which the model will be drawn. If you work with multiple models independently,

it’s necessary to employ a matrix stack to organize the transformations for drawing each

object. (To find out more about the matrix stack in Processing, read the documenta-

tion on the pushMatrix() and popMatrix() functions.) After you translate the space to the

middle of the window, the space is rotated around the y- and x-axes by the rotY and rotX

values, respectively. Initially, both values are set to 0:

 translate(width/2, height/2, 0);

 rotateX(rotY);

 rotateY(rotX);

The mouseDragged() function is a built-in Processing function that is used to define

what happens when the mouse button is held and the mouse moves. In this case, the

x- and y-axes’ rotations are dependent on the difference between the current mouse posi-

tion and the mouse position in the previous frame (accessed using the special built-in

Processing variables pmouseX and pmouseY):

void mouseDragged(){

 rotX += (mouseX - pmouseX) * 0.01;

 rotY -= (mouseY - pmouseY) * 0.01;

}

Going back to the draw() function, you finish by calling the draw() method for the

model object. This draws the object to the screen:

 model.draw();

OBJ Draw Modes
The OBJLoader library implements a number of methods that affect the way the model

is drawn. To get a sense of some of these, add the following code to the end of the sketch

you just wrote. This code mainly adds a keyPressed() function to your sketch, which

will demonstrate different draw modes in real time. This code is adapted directly from

Working with OBJ files  ■   97

the example code included with the OBJLoader library. I also recommend that you go

through the other examples for that library and study them:

boolean texture = true;

boolean stroke = false;

void keyPressed(){

 if(key == ‘t’) {

 if(!texture) {

 model.enableTexture();

 texture = true;

 } else {

 model.disableTexture();

 texture = false;

 }

 }

 if(key == ‘s’) {

 if(!stroke) {

 stroke(255);

 stroke = true;

 } else {

 noStroke();

 stroke = false;

 }

 }

 else if(key==’1’)

 model.shapeMode(POINTS);

 else if(key==’2’)

 model.shapeMode(LINES);

 else if(key==’3’)

 model.shapeMode(TRIANGLES);

}

When you run the sketch now, you’ll see that pressing the T key while the sketch is

running toggles between textured and untextured drawing. Pressing the S key toggles

between stroke drawing and nonstroke drawing. Pressing the 1, 2, or 3 number keys

switches between POINTS draw mode, which draws only vertices as colored points in

space; LINES draw mode, which draws only edges; and TRIANGLES draw mode, which

draws triangle faces that can have material properties and textures. To see points and

lines, you need to remove the noStroke() command from your code.

A Closer Look at OBJ files
OBJ files are text files that contain 3D data. By default, your operating system will prob-

ably not know what to do with an OBJ file type, but you can open these files directly in

98  ■   Chapter 5 : 3D Programming in Processing

a text editor such as WordPad or TextEdit. If you do this with sa.obj, you’ll see a file

that begins with some commented content (lines of code beginning with the # sign are

ignored), and then continues as follows:

mtllib sa.mtl

g default

v 0.081989 -0.190131 0.414445

v -0.081989 -0.190131 0.414445

...

The file then continues on for many lines to list the x, y, z positions for all vertices and

information about textured vertices and normals, edges, and faces. The first line, after

the comments, points to the material library file, sa.mtl. This file contains information

about the material properties. The file must have the same name as is listed here, and it

must be in the same directory as the OBJ file.

If you open the MTL file, you can see that there is also information here about external

files on which the material depends. In this case, the image shootinanniecolor.jpg is

listed as the map_Kd value. This image must be accessible to the sketch. If you find that

your OBJ models are not showing up as expected in the sketch, it can be helpful to

double-check the content of these files and make sure that they match up with the data

resources available to the sketch:

newmtl Material_001_color

...

map_Kd shootinanniecolor.jpg

If you’re looking at different OBJ and MTL files, don’t get too hung up on them look-

ing exactly the same as this one. There are different attributes that may be included depend-

ing on your model’s properties and on the way you exported it. In general, you shouldn’t

need to concern yourself directly with the content of these files. The OBJLoader should

handle all of that for you.

Simple Animation with OBJ Arrays
The previous example shows how to import an OBJ file into a processing sketch. In this

section, you’ll see a simple example of an animated OBJ.

There are a couple of things you should be aware of. Processing is not really intended

primarily as a 3D game engine, and it is not optimized for 3D animation. The example

I show here is a bit of a hack, and it is suitable for only short, animated loops using small

models with very small numbers of vertices. The reason for this is that I am loading each

frame of the animation as a separate OBJ file and putting them into an array. You can see

an overview of the frames rendered from the Blender viewport in Figure 5.10.

Simple Animation with OBJ Arrays  ■   99

To set up an animated sequence using an array of OBJ files, start a new sketch and

enter the following code:

import processing.opengl.*;

import saito.objloader.*;

OBJModel[] anim;

int animFrames = 20;

int animFrame;

boolean animOn= false;

float rotX;

float rotY;

void setup(){

 size(600, 600, OPENGL);

 anim = new OBJModel[animFrames];

 String filename = “”;

 for(int i = 1; i <= animFrames; i++){

 if(i < 10){

 filename =

 “sa_00000”+ i + “.obj”;

 }else{

 filename =

 “sa_0000”+ i + “.obj”;

 }

Figure 5.10

The animated
frames for the
Annie walk cycle

100  ■   Chapter 5 : 3D Programming in Processing

 anim[i-1] =

 new OBJModel(this, filename, “relative”, TRIANGLES);

 anim[i-1].enableDebug();

 anim[i-1].scale(50);

 }

 noStroke();

}

void draw(){

 background(200);

 lights();

 translate(width/2, height/2, 0);

 rotateX(rotX);

 rotateY(rotY);

 if(animOn){

 anim[animFrame].draw();

 animFrame++;

 if(animFrame == animFrames){

 animFrame = 0;

 }

 }else{

 anim[animFrame].draw();

 }

 rotY = rotY + 0.005;

}

void mousePressed(){

 animOn = true;

}

void mouseReleased(){

 animOn = false;

}

Rather than use the sa.obj model, I use the super low-poly animated model that you

saw in Chapter 3. Make sure that all the OBJ files from sa_000001.obj to sa_000020.obj

have been copied into the sketch’s data directory, along with all the appropriate MTL

files. (This is a bit inefficient. All of the OBJ files could easily point to a single MTL file in

this case, but there isn’t an option for doing so when exporting animated OBJ files from

Blender—and it’s too troublesome to change by hand.) Also, be sure the texture image is

accessible.

Simple Animation with OBJ Arrays  ■   101

When you run the sketch, you should see the character appear just as previously. This

time, the character will rotate slowly around the y-axis, and when the mouse button is

pressed, she’ll walk with a simple walk cycle.

Let’s take a look at the parts of the code that are new. Some variables are necessary for

the animation. First, an array of OBJModel objects is declared. This is similar to the array

of objects you saw in Chapter 2. The next variable, animFrames, is really a constant that

simply stores the number of frames in the animation loop. The second integer, animFrame,

will represent the current frame as the animation loop runs. The last variable here, animOn,

is a Boolean variable, which means that it represents one of two possible values: true or

false. These will be used to switch the animation on and off:

OBJModel[] anim;

int animFrames = 20;

int animFrame;

boolean animOn= false;

In the setup() function, a new array of OBJModel objects with 20 elements is created:

 anim = new OBJModel[animFrames];

Just as in the previous example, you need to access the OBJ file from the data direc-

tory by name. However, in this case, you want to iterate through the numbers 1 to 20

and access the corresponding numbered file. To do this, you create a String type variable

called filename, which is initialized to the empty string using “”:

String filename = “”;

Next is a for loop iterating from 1 to 20. In the case that the iteration number is less

than 10 (that is, it’s a one-digit number), then the filename needs an extra 0. You create

the filename by appending the iteration number between sa_00000 and .obj. When used

with a String type object, the + symbol is the string concatenation operator:

 for(int i = 1; i <= animFrames; i++){

 if(i < 10){

 filename =

“sa_00000”+ i + “.obj”;

 }else{

 filename =

“sa_0000”+ i + “.obj”;

 }

Then the appropriate element of the array is created using the OBJModel construc-

tor and the filename variable. Note that the array index is i–1. This is because Processing

arrays are indexed from 0, whereas the OBJ files are numbered starting with 1. The maxi-

mum index for this array is 19:

 anim[i-1] =

 new OBJModel(this, filename, “relative”, TRIANGLES);

102  ■   Chapter 5 : 3D Programming in Processing

The actual animation happens in the draw() function, of course. In this case, the ani-

mation is dependent on the animOn variable. Since it’s a Boolean, it can be used as is in an

if/then clause. If it’s true, then the model object in the current frame is drawn and the

frame is incremented. When the current frame hits 20, it’s reset to 0, repeating the cycle:

 if(animOn){

 anim[animFrame].draw();

 animFrame++;

 if(animFrame == animFrames){

 animFrame = 0;

 }

 }

Finally, the mousePressed() and mouseReleased() functions are implemented as follows,

controlling the value of animOn:

void mousePressed(){

 animOn = true;

}

void mouseReleased(){

 animOn = false;

}

That’s about it for the basic 3D programming skills in Processing that you’ll need for

what follows. In the next chapter, you’ll take what you’ve learned here and step into the

world of augmented reality.

C hap te r 6

Augmented Reality
with Processing

Here’s where  the real fun begins. In this chapter, you’ll finally get down to

the business of running AR applications in Processing. To do this, you’ll turn to a few

more important third-party libraries and delve a little further into 3D programming in

the Processing environment.

In this chapter, you’ll learn about the following topics:

The NyAR4psg library■■

Digging into the sample code ■■

Controlling transformations with multiple markers■■

104  ■   Chapter 6 : Augmented Reality with Processing

The NyAR4psg Library
Now that you’re comfortable working with 3D content in the Processing environment

and you’ve got your markers and marker files created as described in Chapter 1, “Getting

Started with Augmented Reality,” you’re ready to take the step of putting it all together in

an AR environment. To do this in Processing, you need the NyAR4psg library.

The NyAR4psg library is a port of a wider project called NyARToolkit, originally cre-

ated by Ryo Iizuka. NyARToolkit is a collection of ports of the original GPL-licensed

ARToolKit. NyARToolkit includes ports for Java, Android, C#, ActionScript 3, Silverlight

4, C++, and Processing, although they are not all at the same level in terms of stabil-

ity. Later in this book, you’ll look at some of the other ports, and once you’re comfort-

able working with AR in general, you’ll find it straightforward to work with any of the

ports in other programming environments familiar to you. The project website of the

NyARToolkit project can be found at

http://nyatla.jp/nyartoolkit/wiki/index.php?FrontPage.en

A description of the Processing port is found at

http://nyatla.jp/nyartoolkit/wiki/index.php?NyAR4psg.en

The main download site you should use for most NyARToolkit ports is

https://sourceforge.jp/projects/nyartoolkit

However, you don’t need to download anything from these sites right now. In the case

of the Processing port, some third-party products that you’ll want to use aren’t included

in the official package available at SourceForge, so you’ll download them from another

source.

As mentioned previously, different ports vary in their state of development. The offi-

cial NyAR4psg library does not have multimarker support, meaning that an application

can recognize only a single physical marker at a time. Multimarker applications are more

interesting because they enable a greater degree of interaction, as you’ll see later in this

chapter. Fortunately, because this is an open source project, third-party developers can

contribute useful features. In the case of the NyAR4psg library, developer Charl Botha

has contributed very useful multimarker capabilities, and the improved library is avail-

able from his website at

http://cpbotha.net/2010/06/05/processing-nyartoolkit-multiple-marker-

tracking

You can follow the link to the downloads page to obtain the latest version of the soft-

ware, which includes the entire NyARToolkit for Processing along with the multimarker

modifications. The most recent version of the modified library supports the P3D envi-

ronment in addition to OpenGL, so you can compare the performance of the two on your

http://nyatla.jp/nyartoolkit/wiki/index.php?FrontPage.en
http://nyatla.jp/nyartoolkit/wiki/index.php?NyAR4psg.en
https://sourceforge.jp/projects/nyartoolkit
http://cpbotha.net/2010/06/05/processing-nyartoolkit-multiple-marker-trackingYou
http://cpbotha.net/2010/06/05/processing-nyartoolkit-multiple-marker-trackingYou
http://cpbotha.net/2010/06/05/processing-nyartoolkit-multiple-marker-trackingYou

The NyAR4psg Library  ■   105

own machine and use whichever one works better for you. The library is also available at

this book’s web page (www.sybex.com/go/prototypingar). Note that Botha’s multimarker

version of the NyAR4psg library includes the entire library, so it isn’t necessary to down-

load the original library as well.

In order for NyAR4psg to work properly, you’ll also need the GSVideo library. This

library provides necessary video capture and playback functionality. You can download

that at http://gsvideo.sourceforge.net. Be sure to choose the version appropriate to your

platform.

Installing and Testing the Library
Install the libraries exactly as you did the OBJLoader library in Chapter 5, “3D

Programming in Processing.” In the case of GSVideo, uncompress the zip file and place

the resulting GSVideo directory in the libraries directory in your Processing directory.

(By default, this should reside in your Documents or My Documents directory, depending on

your OS.) In the case of NyAR4psg, the uncompressed directory should have the name

NyAR2. This should also be placed in your Processing/libraries directory. Figure 6.1

shows the directory structure as it appears in Mac OS X.

Inside the NyAR2 directory, you’ll find the usual subdirectories. First, look in the data

directory to find the files pattHiro.pdf and pattKanji.pdf. These are the test markers

you’ll use to test the library. Print them or display them in another way. You’ll find an

image called multimarker.png at this book’s web page. This image can be used to display

both markers simultaneously on a smartphone screen. In addition to the markers, of

Figure 6.1

The NyAR2 library in
its proper place

http://www.sybex.com/go/prototypingar
http://gsvideo.sourceforge.net

106  ■   Chapter 6 : Augmented Reality with Processing

course, you’ll need a camera connected to your computer. This can be either a built-in

webcam or a stand-alone USB camera.

Next, look in the example directory and find the

NyARMultiTest directory. Don’t use the example

applications in the other directories because

they are intended to work with the unmodified

NyAR4psg library. For the multimarker library,

NyARMultiTest is the only example that will run

properly. In this directory, you’ll find a Processing

sketch called NyARTest.pde. Double-click on the

icon to open the sketch in Processing, and then

click the Run button. A sketch window should

open showing a real-time video stream from your

webcam. Hold the markers up so that they’re

shown in the video. The image of each marker

must be completely visible, without shadows or

obstructions. You should see a black cube with

yellow edges appear on the Hiro marker and a black sphere with cyan edges appear on the

Kanji marker, as shown (in gray scale) in Figure 6.2. (Here the two markers are displayed

as a single image on a mobile device.)

He ads U p fo r V e r s i on Incons i stenc i es !

As this book was edited for technical accuracy, a new version of GSVideo was released, intro-

ducing some version inconsistencies with the NyAR2 library. If run using the most recent ver-

sion of GSVideo, the NyARMultiTest example will execute without errors, but the screen you

see will be only gray, without any video capture displayed. To get the camera to display prop-

erly, you must add the line of code cam.play(); after the following line in the sketch code:

cam=new GSCapture(this, width, height);

If you have any trouble doing this, read the console at the bottom of your Processing

window. Make sure you have the libraries correctly installed in Processing/libraries, and

also make sure that the names of the directories containing the libraries are identical to

the names of the JAR files in the subdirectories named library. Experiment with both the

OpenGL and P3D programming modes.

Common problems at this point include graphics-driver issues and Java version

problems. If you have persistent problems getting this to work on your computer, start

by looking at the questions and answers on the developer’s website for the multimarker

NyAR4psg library and the GSVideo library, both provided earlier. Another problem that

Figure 6.2

Testing the
multimarker

NyAR4psg library

Digging into the Sample Code  ■   107

might arise is connected with the dimensions of your webcam. If your webcam has other

dimensions besides the standard VGA display, the sketch will probably crash. Keep read-

ing to find out how to deal with that. Another good resource for technical questions is the

Processing forum at www.processing.org.

Digging into the Sample Code
The best way to learn about new libraries in Processing is to study the code examples

included with the library. All libraries should have code examples included that cover

their functionality, and it can be a lot of fun and very inspiring to go through the exam-

ples to see the capabilities of the libraries. The GSVideo library is a great example of this,

and I highly recommend checking out the examples included for that library. However,

for the purposes of this book, the only Processing library code you really need to under-

stand can be found in the NyARMultiTest example.

The example sketch itself includes extensive explanatory comment text from the

developer. This may well be all you’ll need to understand the code, and I recommend you

always read the developer comments in the library sample code. (This is another reason

why the modified NyAR4psg library is preferable for most readers of this book—the orig-

inal version’s comments are in Japanese.) For the sake of completeness, I’m going to run

through the example line by line and fill in any blanks so that you completely understand

what’s going on.

The first few lines of code should be familiar already:

import codeanticode.gsvideo.*;

import jp.nyatla.nyar4psg.*;

import processing.opengl.*;

These are where necessary libraries are imported. The example leaves in the import

command for the OpenGL library, but this is necessary only if you use OPENGL as the

argument for the size() function. In this case, you can delete the line import processing

.opengl.*; and there will be no problem, because the example uses the P3D environment.

The next several lines declare some specialized variables:

GSCapture cam;

NyARMultiBoard nya;

PFont font, font2d;

The first of these variables is a GSVideo class variable, so it requires the GSVideo

library. This creates an object to capture images from the camera. The variable cam will

hold an image representing a captured video frame for each iteration of the draw() func-

tion. This provides the live-action backdrop for the sketch.

The NyARMultiBoard class is from the NyAR2 library. The variable nya holds an object

of this class. This object handles the computer-vision and marker management work that

is integral to the AR application. The NyARMultiBoard class stores the pattern information

http://www.processing.org

108  ■   Chapter 6 : Augmented Reality with Processing

you provide, recognizes the markers, calculates their locations and rotations, and enables

you to access their data within the application.

Finally, two PFont objects are created. These are Processing fonts, and they are used to

write characters to the screen. One of the fonts will be used to draw text within the 3D

space, and another, smaller version of the same font will be used to draw text in 2D.

The next few lines should also be pretty familiar. This sketch uses the P3D environ-

ment, as you can see from the third argument to size(). The dimensions here are impor-

tant: They’re the dimensions of a standard VGA webcam display. If your camera has

different dimensions than this, you’ll need to adjust these values to conform to the cam-

era’s dimensions. The application will crash if you try to set the display to a different size

than your camera’s data provides for pixel data.

The colormode() function sets the color values to range from 0 to 100 rather than the

default 255, but this line appears to be left in the code by mistake. Later in the code, you

can see stroke() calls that use values of 200 and 255, which indicate that the program-

mer intended the range to be 0 to 255. Because RGB and 255 are the default values for the

color mode parameters, it would be more appropriate not to call the colormode() function

at all here. You should delete this line of code.

The two lines following the colormode() function call create the fonts that will be used

for text:
void setup() {

 size(640,480,P3D);

 colorMode(RGB, 100);

 font = createFont(“FFScala”, 32);

 font2d = createFont(“FFScala”, 10);

Next, a new GSCapture object is created and assigned to the variable that has already

been declared for that purpose. The arguments associate the object with the current

sketch and set its dimensions to be the size of the display (which, as mentioned earlier,

must match the dimensions of the real-life camera). The next line, cam.play();, activates

the camera:
 cam=new GSCapture(this,width,height);

 cam.play();

Next, two new arrays are introduced. The first is an array of strings called patts. This

holds the filenames of the pattern files for the markers to be used. You can look in the

sketch’s data directory to confirm that both of these files are present. You can have as

many strings here as you have distinct marker types. The second array is an array of dou-

bles representing the width of the markers in millimeters. This array must have a value

for each value in the patts array.

 String[] patts = {“patt.hiro”, “patt.kanji”};

 double[] widths = {80,80};

Digging into the Sample Code  ■   109

Now that these values have been set, these variables are used as arguments for the

NyARMultiBoard constructor to create the new NyARMultiBoard object nya. The fourth argu-

ment contains the name of the camera-calibration file, which must also be present in the

sketch’s data file. For the purposes of this book, you can simply use the default camera-

calibration file, which gives good results for a wide variety of commonly used webcams

and mobile cameras.

nya=new

 NyARMultiBoard(this,width,height,

 “camera_para.dat”,patts,widths);

You can achieve better pattern recognition for specific cameras by creating custom

calibration files. For information on how to do this, please see the documentation at

www.artoolworks.com/support/library/Calibrating_your_camera.

The next line simply prints the version of the NyAR4psg library to the Processing con-

sole at the bottom of the sketch window:

 print(nya.VERSION);

After this, two more lines set parameters relevant to marker recognition. The first line

sets the grayscale threshold, which is used to distinguish light from dark in the image

once it’s been converted to gray scale. Somewhere approximately midway between 0 and

255 is appropriate here, and you can tweak this value for various lighting conditions.

The next line sets the confidence threshold. A marker is considered to be detected if the

algorithm recognizes it with a level of confidence above this value. If the value is set to

1.0, the marker will never be detected. If the value is set to 0.0, almost anything could be

mistaken for a marker and treated as a detected marker. The value should be somewhere

between these values in order to limit detections to actual markers as strictly as possible

while still being forgiving enough to withstand the slight ambiguity in the image.

 nya.gsThreshold=120;//(0<n<255) default=110

 nya.cfThreshold=0.4;//(0.0<n<1.0) default=0.4

}

The next chunk of code is for drawing the little labeled dots that indicate the corner

positions. The argument is a two-dimensional array of integers that holds x and y coordi-

nates for each of the four corners of the marker. This value can be accessed directly from

the nya object, as you will see shortly.

void drawMarkerPos(int[][] pos2d){

To define this function, first the font, stroke color, and fill color are set:

 textFont(font,10.0);

 stroke(100,0,0);

 fill(100,0,0);

http://www.artoolworks.com/support/library/Calibrating_your_camera

110  ■   Chapter 6 : Augmented Reality with Processing

Still in the definition of the drawMarkerPos() function, we iterate from 1 to 4 to draw an

ellipse at each corner. The first index for pos2d[][] represents the corner index, and the

second index is 0 for the x coordinate and 1 for the y coordinate. The ellipses are 5 pixels

in height and width.

 for(int i=0;i<4;i++){

 ellipse(pos2d[i][0], pos2d[i][1],5,5);

 }

Next the corners are iterated through once more to draw the position text labels. The

text() function has three arguments: The first is the string content of the text itself (the +

operator concatenates strings), and the second and third arguments are the x and y coor-

dinates of where the text is written on the screen.

 fill(0,0,0);

 for(int i=0;i<4;i++){

 text(“(“+pos2d[i][0]+

 “,”+pos2d[i][1]+

 “)”,pos2d[i][0],pos2d[i][1]);

 }

}

Now begins the draw() function. As usual, this contains the main repeating functional-

ity of the sketch. It begins by checking whether camera data is available. If not, it returns

immediately and the rest of the function is not executed.
void draw() {

 if (cam.available() !=true) {

 return;

 }

The read() method is called for the cam object. This tells cam to read the camera data

into an image:

 cam.read();

We want to draw the image from the camera into the sketch window. To do this,

it’s first necessary to ensure that the 3D depth test is disabled. Depth testing is how

Processing determines which 3D geometry obscures which other geometry; with depth

testing, objects “closer” to the viewer are drawn over objects “further” from the viewer.

When depth testing is disabled, this step is omitted and everything is drawn to the

screen in the order that its draw command is called. In this case, we want the 2D image

from the camera to behave as a background and for everything else to be drawn on top

of it, so depth testing is disabled with the hint() function. The hint() function is a bit

of a hack in Processing, and it is used to control various rendering attributes that do not

have a more consistent implementation in Processing. The image is drawn (beginning at

the upper-left corner) and depth testing is turned back on. (This step is redundant and

Digging into the Sample Code  ■   111

probably left over from previous code, because depth testing will be turned off again for

text in the next few lines, but the redundancy doesn’t hurt anything.)

 hint(DISABLE_DEPTH_TEST);

 image(cam,0,0);

 hint(ENABLE_DEPTH_TEST);

The rest of the function depends on the recognition algorithm detecting a marker

in the cam image. The detect() method is called for nya to determine this. This method

returns a true value if at least one marker is detected:

 if (nya.detect(cam)){

The next block of code iterates through the defined markers (nya.markers.length

returns the number of defined marker patterns) and draws the little ellipses and the

position tags for each corner of the marker, using the drawMarkerPos() function defined

previously:
 hint(DISABLE_DEPTH_TEST);

 for (int i=0; i < nya.markers.length; i++){

 if (nya.markers[i].detected){

 drawMarkerPos(nya.markers[i].pos2d);

 }

 }

To draw the 3D content, you must turn depth testing back on:

 hint(ENABLE_DEPTH_TEST);

Once again, we iterate through the defined markers and do the drawing appropriate to

the ones that are detected.

 for (int i=0; i < nya.markers.length; i++){

 if (nya.markers[i].detected){

When a marker is detected, the first thing that needs to be done is to call the begin-

Transform() method for the marker. This sets up a 3D transformation matrix with coor-

dinates oriented to the marker. This means that the 3D drawing will all happen with

respect to the position of this marker. If the marker moves or rotates, the entire coordi-

nate space will move or rotate correspondingly:

 nya.markers[i].beginTransform();

The next few lines draw the objects. In this case, there is a transformation first in the z

direction (upward) in order to situate the objects on top of the markers. Then, depending

on which index i represents (that is, which pattern), either a box is drawn (in the case of

the Hiro marker) or a sphere is drawn (in the case of the Kanji marker):

 translate(0,0,20);

 if (i == 0){

 stroke(255,200,0);

 box(40);

 }else{

112  ■   Chapter 6 : Augmented Reality with Processing

 stroke(0,200,255);

 sphere(25);

 }

When the 3D drawing is finished, it’s necessary to end the transformation by calling

the endTransform() method on the marker object:

 nya.markers[i].endTransform();

 }

 }

 }

Finally, the example sketch prints frame rate information in the upper-left corner of

the window. Use this to compare the performance of P3D to OpenGL on your computer.

Use whichever one gives the highest frame rate.

 hint(DISABLE_DEPTH_TEST);

 textFont(font2d,10.0);

 textMode(SCREEN);

 fill(100,100,0);

 text(“frame rate = “ + frameRate, 10, 10);

 textMode(MODEL);

 hint(ENABLE_DEPTH_TEST);

}

You’ve now seen the basics of working with markers, and you’re well on your way to

making your own AR sketches.

Controlling Transformations with Multiple Markers
In this section, you’ll look at a more sophisticated example that makes use of the same

method of animating OBJ files that you saw in Chapter 5. This example also shows you

how you can get a degree of interactivity by using multiple markers to control different

parameters in the scene.

For this example, print copies of the three markers shown in Figure 6.3. You’ll also

need to add to the sketch the PAT files for each pattern, the camera data file, all the OBJ

and MTL files, and the JPEG texture file. You can find all the necessary files at this book’s

web page. Also, I recommend building a simple lazy Susan turntable as described in

Chapter 1 in order to make rotating the turn marker easier.
Figure 6.3

Three markers for
the example

Controlling Transformations with Multiple Markers  ■   113

Now, create a new sketch and type the code shown in Listing 6.1. (The full sketch can

be found among the support files for this chapter.)

L isting 6 .1:

A complete sketch for controlling an animated 3D AR character

import codeanticode.gsvideo.*;

import jp.nyatla.nyar4psg.*;

import saito.objloader.*;

GSCapture cam;

NyARMultiBoard nya;

OBJModel annie ;

PFont font;

PVector move;

PVector xypos;

OBJModel[] anim;

int animFrames = 20;

int animFrame;

boolean animOn= true;

float turn = 0.0;

float prevangle = 0.0;

void setup() {

 size(800,600,P3D);

 colorMode(RGB, 100);

 font=createFont(“FFScala”, 32);

 cam=new GSCapture(this,width,height);

 cam.play();

String[] patts = {“samarker16.pat”,

 “walkmarker16.pat”,

 “turnmarker16.pat”};

 double[] widths = {80,80,80};

 nya = new NyARMultiBoard(this, width, height,

 “camera_para.dat”,patts,widths);

 print(nya.VERSION);

 nya.gsThreshold = 120;//(0<n<255) default=110

 nya.cfThreshold = 0.4;//(0.0<n<1.0) default=0.4

 String filename = “”;

 anim = new OBJModel[animFrames];

 for(int i = 1; i <= animFrames; i++){

 if(i < 10){
continues

114  ■   Chapter 6 : Augmented Reality with Processing

 filename = “sa_00000” + i + “.obj”;

 }else{

 filename = “sa_0000” + i + “.obj”;

 }

 anim[i-1] = new OBJModel(this, filename,

 “relative”, TRIANGLES);

 anim[i-1].enableDebug();

 anim[i-1].scale(15);

 anim[i-1].translateToCenter();

 anim[i-1].enableTexture();

 }

 xypos = new PVector(0, 0);

 move = new PVector(0, -1);

}

void drawMarkerPos(int[][] pos2d){

 textFont(font,10.0);

 stroke(100,0,0);

 fill(100,0,0);

 for(int i=0;i<4;i++){

 ellipse(pos2d[i][0], pos2d[i][1],5,5);

 }

 fill(0,0,0);

 for(int i=0;i<4;i++){

 text(“(“+pos2d[i][0]

 +”,”+pos2d[i][1]

 +”)”,pos2d[i][0],pos2d[i][1]);

 }

}

void draw() {

 if (cam.available() !=true) {

 return;

 }

 background(255);

 cam.read();

 hint(DISABLE_DEPTH_TEST);

 image(cam,0,0);

 if (nya.detect(cam)){

 for (int i=0; i < nya.markers.length; i++){

 if (nya.markers[i].detected){

 drawMarkerPos(nya.markers[i].pos2d);

 }

 }

 if(nya.markers[1].detected){

 animOn = true;

 }else{

 animOn = false;

 }

L isting 6 .1: (continued)

A complete sketch for controlling an animated 3D AR character

Controlling Transformations with Multiple Markers  ■   115

 hint(ENABLE_DEPTH_TEST);

 if (nya.markers[0].detected){

 nya.markers[0].beginTransform();

 noStroke();

 rotateX(radians(-90));

 if(nya.markers[2].detected){

 turn = nya.markers[2].angle.z;

 rotate2D(move, turn-prevangle);

 prevangle = turn;

 }

 translate(xypos.x, xypos.y, 50);

 rotateY(turn);

 if(animOn){

 anim[animFrame].draw();

 xypos.add(move);

 animFrame++;

 if(animFrame == animFrames){

 animFrame = 0;

 }

 }else{

 anim[17].draw();

 }

 nya.markers[0].endTransform();

 }

 }

}

void rotate2D(PVector v, float theta) {

 float xTemp = v.x;

 v.x = v.x*cos(theta) - v.y*sin(theta);

 v.y = xTemp*sin(theta) + v.y*cos(theta);

}

When you run the sketch, position the camera and markers so that the sketch can

recognize all three markers. You should see a scene like the one shown in Figure 6.4.

The character will walk forward when the walk marker is in view and will stop when you

conceal the walk marker (for example, by putting your hand over it). Rotating the turn

marker slightly will make the character turn right and left.

Much of this sketch is made up of things you’ve seen in this chapter and the previous

chapter, but there are some important new elements. If some parts of the code aren’t clear

to you, review this chapter and Chapter 4, “Creating a Low-Poly Animated Character,” to

refresh your memory. Now let’s look a bit closer at the new things introduced in this code.

116  ■   Chapter 6 : Augmented Reality with Processing

After the usual boilerplate of importing necessary libraries and declaring variables,

the first really new elements here are the declarations of the move, xypos, turn, and prevangle

variables. The move and xypos variables are PVector objects. They store vector informa-

tion. In general, PVectors can be two- or three-dimensional vectors. In this case, they will

be two-dimensional in order to represent the 2D space in which the character is able to

walk around freely (the character won’t move up and down, so 3D isn’t necessary). The

floats turn and prevangle will be used to rotate the character using the rotation of the

turn marker. You’ll see how that’s done shortly. For now, it’s just necessary to declare the

variables:
PVector move;

PVector xypos;

float turn = 0.0;

float prevangle = 0.0;

Creating the pattern array happens in the same way as in the previous example, but it’s

worth noting that here we’re using three different patterns: samarker16.pat, walkmarker16

.pat, and turnmarker16.pat. Of course, as always, these must be added to the sketch’s

data directory. (Drag the files directly into your sketch editor window to do this quickly.)

Setting up three patterns instead of two is simply a matter of adding another element to

the array. However, be sure that the widths array created in the next line also has the same

number of elements.

 String[] patts = {“samarker16.pat”,

 “walkmarker16.pat”,

Figure 6.4

The AR character
walking around

the table

Controlling Transformations with Multiple Markers  ■   117

 “turnmarker16.pat”};

 double[] widths = {80,80,80};

Loading the OBJ files into an array is done exactly as you saw in Chapter 5. Once

again, all of the OBJ files must be present in the sketch’s data directory. There are 20 OBJ

files and 20 corresponding MTL files for this animation. They should all be moved into

the data directory.

The setup ends with the creation of the two 2D vectors you’ll be using to keep track of

the character’s position on the ground and its direction of movement:

 xypos = new PVector(0, 0);

 move = new PVector(0, -1);

The beginning of the draw() function is similar to what you saw in the previous

example. The difference is that now there are three markers to consider and each is used

in a different way. The walk marker is stored in nya.markers[1]. This will make the char-

acter walk when it’s visible, and it will stop the character walking when it’s concealed.

To do this, we use the animOn Boolean variable, which has the same effect that it did in

the Chapter 5 example. Here we toggle the animation on and off based on whether nya

.markers[1].detected returns a true or a false value:

 if(nya.markers[1].detected){

 animOn = true;

 }else{

 animOn = false;

 }

The next chunk of code deals with the Shootin’ Annie character marker, which con-

trols the coordinate space of the model. This is basically the home base for the character.

It has to be visible in order for the character to be displayed, and if it moves, the model’s

whole coordinate space will move. All the animation should happen with respect to this

marker.

This marker is set up just like both markers in the multimarker example shown previ-

ously in this chapter. The rotateX() command is necessary to get the character turned

head-up. We don’t draw the character just yet, though. The translation and rotation

depend on the state of the turn marker, which is evaluated next:

 if (nya.markers[0].detected){

 nya.markers[0].beginTransform();

 noStroke();

 rotateX(radians(-90));

This code evaluates the turn marker, which is stored in nya.markers[2]. If the marker

is found, its z rotation angle is accessed (nya.markers[2].angle.z) and passed to the turn

variable. This difference between this value and the previous rotation of the character

is used as the argument for the rotate2D() function, which is defined at the end of the

sketch. This function takes a 2D vector and rotates it by a certain angle (expressed in

118  ■   Chapter 6 : Augmented Reality with Processing

radians). After rotating, the current turn value is passed to prevangle so that the next

frame will add the difference to this rotation. This is a simple way to deal with the steer-

ing of the character. Unfortunately, it’s a bit oversimplified, and the rotation will be

miscalculated at some points. This is because the angle value stored in nya.markers[2]

.angle.z ranges only from –180 to 180 degrees (–pi to pi in radians). This will cause flip-

ping at the point where the values 180 and –180 meet. A slightly more complex solution

would store an absolute rotation value as a float and use this for the turn value. Updating

this absolute rotation value requires doing a bit of arithmetic with the marker’s angle val-

ues and keeping track of what happens when the value switches from 180 to –180, or vice

versa. This modification to the code is left as an exercise.

 if(nya.markers[2].detected){

 turn = nya.markers[2].angle.z;

 rotate2D(move, turn-prevangle);

 prevangle = turn;

 }

Now that you’ve established the value of turn, you can translate and rotate the char-

acter appropriately. The character is placed in the 3D space using translate(), with the

xypos.x, xypos.y values for x and y and 50 for the z value, which simply moves the charac-

ter up enough to seem like it’s standing level with the marker plane. The rotateY() func-

tion turns the character the value of turn:

 translate(xypos.x, xypos.y, 50);

 rotateY(turn);

The next chunk of code handles the case in which animation is turned on. If animOn

is true, then the object representing the current frame is drawn, the move vector value is

added to the xypos vector value, and the frame is incremented (until it hits 20; then it’s

returned to 0). If animOn is not true, then the frame isn’t incremented; the x,y position of

the model is not altered; and the frame-17 object is drawn. You could, of course, use a

separate standing-still object for this.

 if(animOn){

 anim[animFrame].draw();

 xypos.add(move);

 animFrame++;

 if(animFrame == animFrames){

 animFrame = 0;

 }

 }else{

 anim[17].draw();

 }

void rotate2D(PVector v, float theta) {

 float xTemp = v.x;

Controlling Transformations with Multiple Markers  ■   119

 v.x = v.x*cos(theta) - v.y*sin(theta);

 v.y = xTemp*sin(theta) + v.y*cos(theta);

}

With what you’ve learned in this chapter, I’m sure you can think of a variety of inter-

esting experiments to create interactive AR sketches. In the next chapter, we’ll take things

a step further, creating a sketch that interacts even more closely with the world by means

of an electronic sensor and the Arduino microcontroller.

C hap te r 7

Interacting with the Physical World

Until now,  we’ve taken the concept of “reality” in augmented reality to mean

essentially live video. The camera has been the only “sensory” input about the real world

to which your sketches have had access. But AR can potentially take advantage of a much

wider range of sensors. Working with such sensors to create software that interacts with

the world more closely is part of physical computing. Physical computing has enjoyed a

huge boom lately in part because of the availability of inexpensive, easy-to-use hardware

programming interfaces called microcontrollers. The best known of these is the Arduino

microcontroller. In this chapter, you’ll see how to use Arduino to incorporate input from

a simple pressure sensor into an AR sketch.

In this chapter, you’ll learn about the following topics:

Physical computing with Arduino■■

Sensors and circuits■■

Communicating between Arduino and Processing ■■

122  ■   Chapter 7: Interacting with the Physical World

Physical Computing with Arduino
Physical computing involves creating (usually) software-based systems that interact with

the physical world using electronic sensors as input and motors, lights, or other electri-

cal actuators as output. Physical computing has been around in some form for nearly as

long as computers themselves. Many everyday appliances and electronic systems are good

examples of physical computing; home alarm systems, motion-sensitive shop doors, smart

refrigerators, and many more commonplace items all incorporate simple programming

that takes data from sensors and/or causes something to change in the physical world.

For the most part, the appliances you deal with from day to day don’t have a program-

ming interface that is accessible to users. (It’s a little-known fact that the world’s most

widely installed operating system is the Japanese real-time operating system TRON,

specifically its industrial derivative ITRON, which is the embedded operating system for

almost all Japanese-made electronic goods, from alarm clocks to synthesizers to washing

machines.) For this reason, physical computing has long remained the realm of industrial

developers and serious electronics buffs.

With the rise of open microcontroller projects such as Wiring, Gainer, and Arduino,

this has changed. These projects all have the same goal: to enable ordinary developers

to take their projects beyond the confines of their computers and to let digital-media

creators think outside of the box, literally. In this book, we look at the most widely used

and best supported of these projects, Arduino.

The Arduino Microcontroller
Arduino is a specification for microcontrollers and a programming language and envi-

ronment for controlling them. Arduino microcontrollers are small, portable input/

output (I/O) boards that include the basics of a programmable computer: a small central

processing unit (CPU), ports for receiving and emitting electrical impulses, a means of

getting power, and a way to connect to a computer in order to have software uploaded to

it. Different members of the Arduino family vary in their size, processor specifications,

number of input and output ports, and other specifications, but all of them are program-

mable in the same way using the Arduino programming environment. Conveniently, the

Arduino programming environment is based on Processing, so you will notice a lot of

familiar elements in the environment and language. You can download the Arduino pro-

gramming environment from the Arduino website at http://arduino.cc. Like Processing,

it is available for all major operating systems.

The I/O board I used for the project in this chapter is shown in Figure 7.1. It’s the

Arduino Duemilanove, which is Italian for two thousand and nine, so you can guess

what year it came out. As of this writing, the equivalent I/O board is the Arduino Uno.

The main difference that is relevant here is the labeling on the inputs and outputs. I’ll

http://arduino.cc

Physical Computing with Arduino  ■   123

assume you are using the Uno, so I’ll be sure to be clear about the input and output labels

you should look for.

In addition to the multipurpose Uno, there

is a wide variety of other Arduino boards for

more specialized use. Big boards, small boards,

wireless and Bluetooth boards, boards with

minimal components designed for embedding,

and wearable boards can all be found on the

hardware page of the official Arduino website

at http://arduino.cc/en/Main/Hardware. You can

even use the specifications on the website to

build your own board from scratch from basic

components, if you’re so inclined.

The much easier alternative is to buy an

Arduino board. You can find a list of vendors

that sell Arduino on the Arduino website:

http://arduino.cc/en/Main/Buy.

Once you’ve got your Arduino I/O board and a suitable USB cable, follow the instruc-

tions at http://arduino.cc/en/Guide/HomePage for your operating system to see how to

connect the board to your computer and install the drivers.

Other Hardware You’ll Need
In addition to the I/O board, you’ll need a few other components in order to complete the

project described in this chapter, or any other physical computing project, for that matter.

The first thing you’ll need is a solderless prototyping board, or breadboard. A bread-

board is a plastic board with a pattern of perforations like the ones shown in Figure 7.2.

By inserting the ends of wires into

the holes, it’s possible to build cir-

cuits that can be easily changed.

Electricity is conducted between

the holes, as shown in the dia-

gram. The long bus strips shown

horizontally along the top and

bottom of the diagram are used to

provide power to the circuit and

to connect the ground. The rows

of the breadboard shown running

vertically in the diagram are con-

nected as indicated.

Figure 7.1

The Arduino
Duemilanove

Figure 7.2

Diagram of a
breadboard

http://arduino.cc/en/Main/Hardware
http://arduino.cc/en/Main/Buy
http://arduino.cc/en/Guide/HomePage

124  ■   Chapter 7: Interacting with the Physical World

You will also need a USB cable to connect your Arduino to your computer, some jump

wires to build your circuit, a 180Ω (ohm) resistor, a half-inch force-sensitive resistor, and

either some small alligator clips or a soldering iron and solder to connect the sensor to

the jump wires. If you are using the Arduino Uno, your USB cable should have a USB

B-type connector on the end that connects to the I/O board and a standard USB A-type

connector on the end that connects to your computer. Jump wires are stiff, solid wires

that can be easily inserted into the holes on a breadboard and your I/O board. Resistors

are important components for building circuits because they enable you to control the

flow of electricity through the circuit. Finally,

the force-sensitive resistor is the sensor that will

be used in this example to collect data from the

physical world. This part is shown in Figure 7.3.

It is also sometimes referred to as a pressure sensor

because its resistance changes when pressure is

applied to it. This term is more commonly used

for barometric pressure sensors, though, which

are a completely different thing, so I won’t use this term here.

You can buy all the parts online individually or in kits. Two excellent resources for all

the parts you need are www.sparkfun.com and www.adafruit.com. Several kits are available

from these and other vendors. Adafruit’s kit, the Adafruit ARDX - v1.3 Experimentation

Kit for Arduino (Uno) - v1.3, is a great way to get started with Arduino, and it includes

almost everything you will need to carry out the project in this chapter, including the

force-sensitive resistor. If you don’t buy a kit, I still strongly recommend that you buy

a variety of resistors, a few small alligator clips, and a handful of light-emitting diodes

(LEDs) in order to follow some of the online introductory Arduino tutorials and to help

with testing your circuits. If you get more serious about physical computing, a soldering

iron and a digital multimeter will be next on your shopping list.

Building a Toy AR Scale
In this chapter, you’ll see how to build a simple AR scale using the force-sensitive resistor.

This project is intended to be a simple and inexpensive example of how an AR application

can be used to report physical data in an interesting way. In fact, the force-sensitive resis-

tor is not accurate enough to be used as a real scale. If you want to build a real AR scale,

you will need to purchase a more sophisticated digital scale to use as a sensor.

To calibrate the toy scale and give it a numerical range to report, I used two calibra-

tion weights: a 100-gram weight and a 200-gram weight. This is about the range in which

the force-sensitive resistor can give something like an accurate reading. I bought my own

calibration weight set, shown in Figure 7.4, in Japan, and the same cheap educational

set may or may not be easily available elsewhere. You can buy individual 100g and 200g

Figure 7.3

A force-sensitive
resistor

http://www.sparkfun.com
http://www.adafruit.com

Sensors and Circuits  ■   125

weights online from www.americanweigh.com/index.php?cPath=113. Otherwise, you can

“calibrate” your scale using other small objects of about the same weights.

For this project, I’ve also created a special-

ized AR marker, shown in Figure 7.5. I created

this using the scale icon from the Noun Project,

which you can find at http://thenounproject

.com/. This ambitious project is a great resource

for icons and pictographs representing a wide

variety of concepts. Using this image, I created

the marker and pattern files as described in

Chapter 1, “Getting Started with Augmented

Reality.” Note that, in most cases, you can get

away with printing your markers at a smaller

size than 100 percent and still get decent

performance.

Once you’ve got your parts all together,

you’re ready to get started building your circuit

and putting together your physical AR sketch.

Sensors and Circuits
It’s far beyond the scope of this book to describe

the details of how electronic circuits work. There

is a lot to learn, and without a basic knowledge

of how electricity works, troubleshooting can be

difficult. I recommend following a few getting

started tutorials on the Arduino website (http://

arduino.cc). You should at least try to get to

the point where you can turn an LED on and

off with a button before continuing with this

section.

To set up the circuit for this project, use the jump wires to connect the Arduino I/O

board, the breadboard, and the sensor as shown in the diagram in Figure 7.6. Do this

with Arduino unplugged from the USB port of your computer. It’s always best to do your

wiring without the power source connected to avoid short-circuits or shocks. Figure 7.7

shows a photograph of the wires connected to the Arduino board. If you are using the

Arduino Uno I/O board, your Analog In 0 port will be labeled A0. Otherwise there is

no practical difference between the boards. Figure 7.8 shows the wires and the resistor

arranged on the breadboard. Figure 7.9 shows the wires connected to the sensor. I’ve sol-

dered them, but you can use small alligator clips. As you can see in the photograph, I also

added a small handmade pad on top of the sensor to distribute the weight of what I put

Figure 7.4

Calibration weights

Figure 7.5

A new marker

http://www.americanweigh.com/index.php?cPath=113
http://thenounproject.com
http://arduino.cc
http://arduino.cc
http://thenounproject.com

126  ■   Chapter 7: Interacting with the Physical World

on top of it. I made this by slicing off the end of a cylindrical rubber eraser, which was

ideal. A slice of 0.5˝ dowel would also work.

A

B

G

BA G

F

E
D

G
C

Figure 7.6

A circuit diagram for the project

A
B

G

C F

D E

Figure 7.7

Wires connected to the Arduino microcontroller

Figure 7.8

Wires connected to the breadboard

B A
G

F

E

D

C

Figure 7.9

Wires connected to the sensor

Communicating Between Arduino and Processing  ■   127

Let’s take a closer look at what’s happening in this circuit. Look again at the circuit

diagram in Figure 7.6. The wires labeled A and B extending from the 5V and Gnd holes,

respectively, are the power supply (5 volts) and the ground for the circuit. You can think

of the electricity as flowing from the power supply, through the circuit, and to the ground.

These wires connect to the bus strips that run horizontally along the top of the breadboard

in the diagram. Since all the holes in each bus strip are connected, this means that any

hole in the topmost strip can act as a 5V power supply and any hole in the second strip

from the top is a ground connection.

Knowing that, you can see that the wire labeled C on the breadboard extends from the

power supply bus strip to a shared row with wire D to the sensor. Electricity flows from

this contact through the sensor (force-sensitive resistor). After that, the flow is split. Part

of the current goes through the resistor and to the ground via wire F; the other part goes

to the Analog In 0 (or, on the Uno, A0) input port via wire G. The amount of current

flowing into this port is measured as the input for Arduino.

When the force-sensitive resistor is not pressed, its resistance is high, so less current

can flow through it. The low current then flows through the resistor for the most direct

path to ground. When you press the force-sensitive resistor, its resistance is reduced,

resulting in a greater flow of electricity than can easily pass through the resistor. This

forces some of the current down the path to the analog input port. The harder the sensor

is pressed, the greater the current is that flows into the analog input port.

This is all there is to the circuit. Once you’ve set this up, you can go on to program

the Arduino microcontroller and write your Processing sketch to handle the input from

Arduino.

Communicating Between Arduino and Processing
To program your Arduino microcontroller, you use the Arduino programming environ-

ment, which you should download from http://arduino.cc and install if you haven’t

already. When you run the Arduino software, you will see an interface very similar to the

Processing editor you used in previous chapters. This is no coincidence. Like Processing,

Arduino is designed to be straightforward and accessible to people with relatively little

experience in programming hardware, and the similarities in design underscore the fact

that the two are intended to work well together.

The superficial similarity between the Arduino and Processing interfaces can conceal

some important differences in how the two operate. As you’ve seen, Processing sketches

run on your computer. Like other processes on your computer, they can be executed and

halted. The execution of a Processing sketch is done using the Run button in the editor.

Arduino works differently. With Arduino, the code you write in the editor is never exe-

cuted on your computer. Rather, it is verified and compiled and then uploaded via USB

to the Arduino microcontroller. Once the software has been installed on your Arduino

http://arduino.cc

128  ■   Chapter 7: Interacting with the Physical World

board, it executes constantly as long as the Arduino board is provided with power. The

software stays on your Arduino board until another sketch has been uploaded, at which

time the previous sketch is overwritten. This is important to realize. Once the sketch

has been uploaded to the board, the only way to change the board’s behavior is to upload

something else over it. Simply pressing the Stop button on the Arduino editor will have

no effect on how the software installed on the board behaves.

The code for interfacing between Arduino and Processing in this example is adapted

from examples on the Arduino tutorial page at http://arduino.cc/en/Tutorial/

HomePage, in particular the “Graph” example, which was written by David A. Mellis and

modified by Tom Igoe and Scott Fitzgerald. Tom Igoe wrote the Processing code for that

example.

Arduino and the Serial Monitor
The project you’ll create involves both an Arduino program to communicate with the

Arduino board and a Processing sketch to handle the AR side of things on your com-

puter. The Arduino program sends data to the Processing sketch by means of your com-

puter’s serial port. You’ll use a special library in Processing to read the input from the

serial port in real time. On the Arduino side, sending data from the sensor input is the

only thing Arduino needs to do. The Arduino code is very simple. This is all there is to it:
void setup() {

 Serial.begin(9600);

}

void loop() {

 Serial.println(analogRead(A0));

}

Simply enter the code in the editor as shown in Figure 7.10.

Just by looking at the code and comparing it to a Processing

sketch you can probably get a rough idea of what’s happening.

The setup() function in Arduino is analogous to the setup()

function in Processing. It is executed only once, when Arduino

is powered up or reset. It is used to set values and modes that

will be used throughout the sketch. In this case, the Serial

.begin(9600); line of code opens the serial port and sets the

rate of data transmission to 9600 bits per second. This is a

commonly used speed for demonstration sketches in Arduino,

although it is possible to set it at higher or lower rates. It’s fine

for the purposes of this project.

You’ve probably already guessed that the loop() function is

analogous to the draw() function in Processing. It also makes

sense that it would be differently named because Arduino

Figure 7.10

The Arduino editor
and code

http://arduino.cc/en/Tutorial/

Communicating Between Arduino and Processing  ■   129

doesn’t draw anything to a screen on its own—it simply executes commands repeatedly.

This function calls the Serial.println() method to print a line to the serial port. The

argument of the function is analogRead(A0), which reads and returns the value of the

Analog In port 0 (or A0 on the Uno) on your Arduino I/O board.

To upload and execute the code, connect the board to the computer

(once again, instructions for doing that for your operating system can be

found at http://arduino.cc/en/Guide/HomePage) and click the Upload but-

ton shown in Figure 7.11.

If there are no errors in your code, it should upload without a problem.

Once uploaded, it will begin executing. Values from the I/O board’s Analog

0 input will be fed repeatedly to the computer’s serial port via USB. You can

see this happening in real time by using Arduino’s serial monitor. Open the

serial monitor by clicking the Serial Monitor icon shown in Figure 7.12. The

serial monitor will look like Figure 7.13. Note the values coming through the serial moni-

tor and how they change when you press your finger against the force-sensitive resistor.

You will use these values to cal-

ibrate the scale. Place a 100-gram

weight on the scale and note the

value coming through the serial

port, and then do the same with

the 200-gram weight. As men-

tioned previously, the force-sensi-

tive resistor is not very precise, so

the values may vary. When I set up

the project, the values were 3 and

32, respectively, so those are the values I used in Listing 7.1 in the next section.

The Processing Code
Now you have all you need to create the toy AR scale in Processing. Start up a new

Processing sketch, and enter the code in Listing 7.1. You can unplug your Arduino board

while you enter the code and then connect the board before running the sketch.

L isting 7.1:

The Processing code

import codeanticode.gsvideo.*;

import jp.nyatla.nyar4psg.*;

import processing.serial.*;

Serial myPort;

GSCapture cam;

NyARMultiBoard nya;

PFont font;

Figure 7.11

The Upload button

Figure 7.12

The Serial
Monitor icon

Figure 7.13

The Serial Monitor

continues

http://arduino.cc/en/Guide/HomePage

130  ■   Chapter 7: Interacting with the Physical World

L isting 7.1: (continued)

The Processing code

String inString = null;

float low = 3.0;

float high = 32.0;

float weight;

void setup() {

 size(640,480,P3D);

 println(Serial.list());

 myPort = new Serial(this, Serial.list()[1], 9600);

 myPort.bufferUntil(‘\n’);

 font = loadFont(“crystal-lightning-64.vlw”);

 cam=new GSCapture(this,width,height);

 cam.play();

 String[] patts = {“scale16.pat”};

 double[] widths = {80};

 nya = new NyARMultiBoard(this, width, height,

 “camera_para.dat”, patts, widths);

 print(nya.VERSION);

 nya.gsThreshold=120;

 nya.cfThreshold=0.4;

}

void draw(){

 if (cam.available() !=true) {

 return;

 }

 cam.read();

 hint(DISABLE_DEPTH_TEST);

 image(cam,0,0);

 hint(ENABLE_DEPTH_TEST);

 if(nya.detect(cam)){

 if (nya.markers[0].detected){

 nya.markers[0].beginTransform();

 textFont(font,25.0);

 textAlign(CENTER);

 fill(50, 255, 0);

 translate(0,50,80);

 rotateX(radians(180));

 rotateX(radians(90));

Communicating Between Arduino and Processing  ■   131

 text(weight, 0, 0, 0);

 nya.markers[0].endTransform();

 }

 }

}

void serialEvent (Serial myPort) {

 inString = myPort.readStringUntil(‘\n’);

 if (inString != null) {

 inString = trim(inString);

 float val = float(inString);

 weight = 100+((val-low)*(100/(high-low)));

 }

}

Let’s take a closer look at what’s going on in the code.

The first few import commands are familiar. You can probably already predict that the

new one introduced here imports the library for handling serial port connections. The

next line of code declares the variable myPort to be an object of the class Serial. This will

do the work of gathering the incoming data from the serial port:

import processing.serial.*;

Serial myPort;

Recall that your Arduino sketch sent the data to the serial port using a println com-

mand. This means that the data coming in from the serial port is in the form of a string.

For this reason, the variable inString of class String is created to hold the input strings

from the serial port as they come in:

String inString = null;

Next we declare some floats. The low and high values will be used for converting the

serial port values into weights between 100 and 200 grams. Previously, you used the serial

monitor to establish what values corresponded to the two weights. Use those values here:

float low = 3.0;

float high = 32.0;

float weight;

The next chunk of code occurs within setup(). The first line prints a list of the avail-

able serial ports. The next line opens the serial port corresponding to your Arduino

board. Note that the index you should use for Serial.list()[1] depends on where your

Arduino board appears in that list. In my case, the Arduino board is the second in the list

(the first in the list is a USB mouse); therefore I use the index 1. If the Arduino board is

the first in the list, you should use the index 0.

 println(Serial.list());

 myPort = new Serial(this, Serial.list()[1], 9600);

132  ■   Chapter 7: Interacting with the Physical World

The next line tells Processing to buffer the input from the serial port until it sees a

new line. Remember that the Arduino code used the println() method to send its values,

which always ends with a new line. (You saw the new lines print in the serial monitor,

which is why the values lined up down the left of the monitor.)

 myPort.bufferUntil(‘\n’);

The rest of setup() should be familiar to you. It’s the same sort of thing that you’ve

seen in previous AR examples. Skipping ahead to the point in draw() where the marker

has been detected, you can see where the text is written to the screen. These are all just

standard transformations to position the text in a nice way above the scale, positioned

with respect to the marker. The text() function is then called to print the value of weight:

 nya.markers[0].beginTransform();

 textFont(font,25.0);

 textAlign(CENTER);

 fill(50, 255, 0);

 translate(0,50,80);

 rotateX(radians(180));

 rotateX(radians(90));

 text(weight, 0, 0, 0);

 nya.markers[0].endTransform();

Finally, a special function is used, serialEvent(), which is defined as part of the

Processing Serial library. Like setup() and draw(), serialEvent() is called at predeter-

mined times during the execution of your sketch. Specifically, this function is called

whenever data comes in via the serial port (a serial event). The data up until the new line

is passed to the inString variable, which is trimmed (to get rid of the new line symbol),

converted to a floating point number, and then used to calculate the weight based on a

conversion using the low and high values you set previously as constants in the beginning

of the sketch:

void serialEvent (Serial myPort) {

 inString = myPort.readStringUntil(‘\n’);

 if (inString != null) {

 inString = trim(inString);

 float val = float(inString);

 weight = 100+((val-low)*(100/(high-low)));

 }

}

This is all there is to the sketch. To test it, set the sensor and the marker as shown in

Figure 7.14. If all is working as it should, the scale should display 0 if there is nothing

on it.

Communicating Between Arduino and Processing  ■   133

If the scale is properly calibrated (that is, if your high and low values have been set cor-

rectly), you should be able to get readings of 100 and 200 for your 100-gram and 200-gram

weights, respectively, as shown in Figure 7.15. Once that’s working, you can experiment

with weighing other small items between those two weights, such as the small bottles

shown in Figure 7.16.

Figure 7.14

The scale with
nothing on it

Figure 7.15

Correct values for
the weights

134  ■   Chapter 7: Interacting with the Physical World

At this point, you should have a sense of the interesting potential applications of

combining AR with physical computing. This example is only a toy and not very useful

for real-world applications. However, you can see that, with the appropriate sensors, any

number of worthwhile physical qualities can be reported using an AR interface. Weight,

distance, temperature, radioactivity, or other measurable values could be presented

using wearable displays. If you consider the possibilities of adding Bluetooth or wireless

networking, many possibilities open up for combining physical computing with AR on

mobile platforms.

Figure 7.16

Weighing some
small bottles

C hap te r 8

Browser-Based AR with
ActionScript and FLARManager

Browser-based applications  enable you to deliver AR content

to anyone with an Internet connection and open up many interesting possibilities for

AR games, campaigns, and artwork. To create the kind of rich web content necessary

for doing this, you’ll now turn to the world of Flash programming with ActionScript

and explore some powerful open source tools for creating AR applications in this

environment.

In this chapter, you’ll learn about the following topics:

The FLARManager AR toolset for ActionScript■■

Getting FLARManager up and running■■

Creating your own projects■■

136  ■   Chapter 8 : Browser-Based AR with ActionScript and FLARManager

The FLARManager AR Toolset for ActionScript
So far in this book, you’ve learned how to put some interesting AR concepts into practice.

You can show people what you have in mind, or you can create installation-based AR

experiences that incorporate physical computing features. However, Processing has some

unfortunate limitations with respect to AR applications. One important one is that AR

applications cannot easily be exported to a browser-based environment. This has to do

with some incompatibilities between external libraries, and it may be fixed in the future.

Already, standard Processing sketches can be easily exported to browser-ready Java

applets. However, the libraries needed to do AR don’t play well with this export process.

An excellent solution for creating browser-based AR is to use Adobe’s ActionScript

language to create Flash-based interactive content. You can do this using Adobe’s open

source Flex SDK programming framework. The Flex SDK framework is a very powerful

set of development tools for creating all sorts of software, but it excels particularly in cre-

ating rich Internet applications.

FLARToolKit for ActionScript 3 is one of the families of ARToolKit ports based on the

NyARToolKit port for Java mentioned in Chapter 1, “Getting Started with Augmented

Reality.” FLARToolKit itself is available for download at www.libspark.org/wiki/saqoosha/

FLARToolKit/en. However, there is an easier way to use FLARToolKit than downloading it

directly on its own. The FLARManager framework available at http://words.transmote

.com/wp/flarmanager/ is a much more accessible way to create Flash-based AR applications.

FLARManager incorporates a selection of tracking libraries, including the

FLARToolKit and several others. FLARManager also enables you to work with any of a

variety of 3D frameworks for Flash, including Papervision3D, Away3D and Away3D Lite,

Alterna3D, and Sandy 3D. This gives you a range of options with which you can work

to find the right combination for the application you want to make and the tools you

have at your disposal. This flexibility can be a great advantage. Another great advantage

of FLARManager is that the tools have been brought together in a relatively easy-to-use

package. You can quickly compile and run the sample projects and applications to get a

sense of how things are done and what is possible.

Although anyone can follow the steps in this chapter, a working knowledge of

ActionScript 3 and a degree of comfort in reading object-oriented library APIs will be

a must if you want to take what you learn here and do anything further with it. You’ve

seen a simple introduction to the concept of classes, objects, and methods in Chapter 2,

“Introduction to Processing,” but it’s a bit of a leap from that to picking up a new object-

oriented programming language quickly. If browser-based AR applications are some-

thing you want to pursue once you’ve finished reading this book, then I strongly suggest

you take some time to learn the fundamentals of object-oriented programing with

ActionScript.

http://www.libspark.org/wiki/saqoosha/FLARToolKit/en
http://words.transmote.com/wp/flarmanager/
http://www.libspark.org/wiki/saqoosha/FLARToolKit/en
http://words.transmote.com/wp/flarmanager/

Getting FLARManager Up and Running  ■   137

Getting FLARManager Up and Running
To use the FLARManager framework, you need a programming environment suitable

for Flash programming. There are several options. The most widely used is Adobe’s own

Flash Builder, which is available for download from Adobe’s website at www.adobe.com/

products/flash-builder.html. Flash Builder is a powerful, feature-rich integrated devel-

opment environment (IDE). Flash Builder has several advantages. For one thing, it is

based on the Eclipse IDE (in fact, Flash Builder is also available as a plug-in for Eclipse

itself). For this reason, the interface is automatically familiar to developers who work

with Eclipse. Eclipse is the world’s most widely used open source IDE and can be used for

developing for a wide variety of programming languages and platforms. If Flash Builder

is your first experience with an IDE, you’ll find it easy to transition to Eclipse. The

ARMonkeyKit introduced in Chapter 9, “Prototyping AR with jMonkeyEngine,” and

the Android SDK introduced in Chapter 10, “Setting Up NyARToolkit for Android,” are

also based on Eclipse, so you’ll recognize a lot of similarities. (You can even use Eclipse to

program with Processing, if you begin to find the Processing IDE restrictive.)

Another advantage is that Flash Builder is available for both Windows and Mac. The

biggest disadvantage of Flash Builder is that it is not open source or free of charge. The

trial version is functional for 60 days, after which you must buy a license. Special rates

and free versions may be available under certain conditions to educators and students.

You can learn more about those offers from Adobe’s website. In general, however, you

will need to pay to use Flash Builder.

A very good open source alternative is FlashDevelop, which you can download from

www.flashdevelop.org. FlashDevelop is an IDE with most of the core functionality of

Eclipse; you can edit your code, organize your projects, and build and run applications

with FlashDevelop. The interface is not as universally familiar as Eclipse, but then again,

an IDE is an IDE at the end of the day, once you get a bit of experience as a developer. A

bigger disadvantage of FlashDevelop is that it is not available at all for the Mac platform.

If you’re a Mac user, you should install Flash Builder and then make sure you get through

this chapter in the next 60 days! After that, you can decide whether you want to pay for

the license or try to find alternate tools for developing your Flash applications. Linux

users will need to find alternate tools anyway, but if you’re a Linux user, I assume you’re

pretty used to that.

Installing and Preparing FLARManager
If you haven’t done so already, download the FLARManager package from http://words

.transmote.com/wp/flarmanager/ and unzip the ZIP file. You should find the directory

FLARManager_v1_1_0 in the directory you created by unzipping the archive. This version

is also included among the downloadable support files for this book, in case the officially

http://www.adobe.com/products/flash-builder.html
http://www.flashdevelop.org
http://words.transmote.com/wp/flarmanager/
http://www.adobe.com/products/flash-builder.html
http://words.transmote.com/wp/flarmanager/

138  ■   Chapter 8 : Browser-Based AR with ActionScript and FLARManager

available FLARManager version has changed in the meantime. Place this directory wher-

ever you’d like the project to reside on your hard drive.

In the directory FLARManager_v1_1_0\resources\flarToolkit\patterns, you’ll see 12

PNG image files. These are AR markers for the included FLARManager sample projects.

You should print these images. I also recommend making a note on the back of each

marker indicating which image is which. Doing so will make it easier to keep track when

you are experimenting with applications that make use of multiple markers.

In the next two sections, I describe how to get your FLARManager project set up from

scratch in both Flash Builder and FlashDevelop.

Setting Up the Project in Flash Builder
Download, install, and run Flash Builder. The initial layout of the work area will appear

as shown in Figure 8.1. If you’re familiar with Eclipse, you’ll notice that it is essentially

identical to Eclipse aside from the logos. You’ll also notice that the Flash Builder start

page occupies the main window. There are some useful links on this start page, and you

may want to return to it later if you want to go further in learning Flash Builder. You can

always bring up the start page by choosing Help ➔ Start Page from the main menu bar.

As is typical with most applications, the main menu bar is located along the top of your

screen on the Mac, and across the top of the Flash Builder window in Windows. For now,

close the Start Page by clicking the little white X on the tab at the top of the window.
Figure 8.1

Flash Builder when
you first open it

Getting FLARManager Up and Running  ■   139

From the File menu in the main menu bar, choose Import Flash Builder Project,

as shown in Figure 8.2. In the dialog box, choose the Project Folder radio button and

click Browse to navigate to the

FLARManager directory that

you unzipped before, as shown in

Figure 8.3. Click Finish. Another

dialog box will open asking you to

choose the Flex SDK version. The

default is Use Default SDK (cur-

rently “Flex 4.5”). Leave this option

selected and click OK.

When the project opens in

Flash Builder, its directories and files will be

displayed in the Package Explorer window to

the left side of the work area. Click the little

triangles to the left of the directory names to

display the contents of the directories. Drill

down to display the contents of FLARManager/

src/(default package), as shown in Figure 8.4.

Note that the icon of the ActionScript file

FLARManagerExampleLauncher.as is labeled with a

small blue dot. This indicates that the applica-

tion in this file is the one that will be built and

run by default when you click the run button in the Flash Builder header bar. Make

sure that your camera is connected to your computer, and then click the run button.

When you click the run button, Flash Builder will try to build your project. If all goes

well, it will fail with three errors the first time you

run it, because the necessary HTML templates have

not been created. You will see an error report reading

Errors (3 Items) in the Problems tab in the window

below the main editor window. If you click on the

triangle to the left of this error report, the three errors

will be displayed, each reading “Cannot create HTML

wrapper. Right-click here to recreate folder html-tem-

plate.” Follow that instruction, and right-click on one

of the errors; then choose Recreate HTML Templates,

as shown in Figure 8.5. This will fix these errors. Click

the run button again, and the project should build

without a hitch. If you still have problems or if there

Figure 8.2

Importing a project

Figure 8.3

Selecting the
project folder

Figure 8.4

The Package
Explorer window

140  ■   Chapter 8 : Browser-Based AR with ActionScript and FLARManager

were other errors than the three described here when you first ran the project, make sure

that you imported the project correctly and that the project directories are organized cor-

rectly in the Package Explorer.

After the project builds, it will run immediately in your default web browser. A dialog

box will come up in your browser to request permission from the user for the application

to access the webcam, as shown in Figure 8.6. This dialog box is a security feature, and it

is shown any time a Flash application requests access to the camera or microphone from

the browser. Click Allow to enable the application to access the camera. When you do so,

your camera will activate. Hold one of the markers so that it is visible to the camera (any

of the markers you printed in the previous section will do). You should see a character

appear and walk in place on top of the marker, as shown in Figure 8.7.

If you’ve gotten this far in Flash Builder, you can skip the next subsection and go

straight to the section “A Tour of the FLARManager Examples.”

Figure 8.5

Re-creating the
HTML templates

Figure 8.6

The camera-access dialog box

Figure 8.7

Your first browser-based AR app

Getting FLARManager Up and Running  ■   141

Setting Up the Project in FlashDevelop
If you’re working with FlashDevelop, download, install, and run the software. You also

need to make sure that you have installed the open source Flex SDK from Adobe, which

can be downloaded from here:

http://opensource.adobe.com/wiki/display/flexsdk/Flex+SDK

You also need to be sure to have Flash Player 10 or above installed. You can get that

from here:

www.adobe.com/support/flashplayer/downloads.html

The FlashDevelop interface is shown in Figure 8.8. Create a new project by selecting

New Project from the Project menu in the menu bar, as shown in Figure 8.9.

A New Project window will open where you can

select the type of project template and give the proj-

ect a name and location, as shown in Figure 8.10.

Choose Flex 3 Project, and enter your project name

in the Name window. (Any name will do, but use

a name that indicates that this is a FLARManager

project.) Choose the location of the project in the

Location field. If you want FlashDevelop to create the project directory for you, make sure

the Create Directory For Project check box is selected and then click OK.

Figure 8.8

The FlashDevelop
interface

Figure 8.9

Creating a new proj-
ect in FlashDevelop

http://opensource.adobe.com/wiki/display/flexsdk/Flex+SDK
http://www.adobe.com/support/flashplayer/downloads.html

142  ■   Chapter 8 : Browser-Based AR with ActionScript and FLARManager

An empty Flex 3 project will be created. You can look at the

structure of the project in the Project viewer window, as shown

in Figure 8.11. Double-clicking directory names will display the

directory’s contents. A few files, such as the Main.mxml file in the

src directory, have been created automatically.

To bring the FLARManager content into the project, you

can simply drag and drop the necessary directories from the

FLARManager_v1_1_0 directory into the Project viewer win-

dow in FlashDevelop. Drag all the files and directories into

the top-level project directory. When you do this, you’ll be

asked whether you are sure you want to overwrite the src

directory. Click Yes. The resulting project listing should

look the one shown in Figure 8.12.

You need to make a few changes to run the project.

First, delete the Main.mxml file that was created automati-

cally by right-clicking on the filename in the Project viewer

and choosing Delete, as shown in Figure 8.13. Instead of

Main.mxml, you want FLARManagerExampleLauncher.as as the

main application file to be compiled. Set this file to com-

pile by right-clicking the filename and choosing Always

Compile from the menu, as shown in Figure 8.14.

Figure 8.10

Setting up the
new project

Figure 8.11

The basic Flex 3
project in the

Project viewer

Figure 8.12

Dragging the
contents of

FLARManager into
the project

Getting FLARManager Up and Running  ■   143

FlashDevelop will look for the necessary libraries in a directory called lib. However, the

FLARManager project has the libraries in a directory called libs. Fix this by first deleting

the directory lib that was created automatically. Then rename your

libs directory to lib, as shown in Figure 8.15. Be careful that you

delete the empty directory and not the one with all your libraries in it.

Even though you’ve got the directory named properly, the con-

tents of lib are in compiled form and they need to be included in the

project’s library manually. Do this by going through the lib direc-

tory and for each SWC file, right-click the file and choose Add To

Library, as shown in Figure 8.16.

Once you’ve got the libraries added, make

sure your camera is connected and then build

and run the application by clicking the little

blue triangle button in the toolbar across the

top of the FlashDevelop workspace. If all goes

correctly, the application shown in Figure 8.7

will run directly in the Flash Player. This is a bit

different from the default behavior that Flash

Builder users see, where the application runs in

Figure 8.13

Deleting Main.mxml

Figure 8.14

Choosing the main file to compile

Figure 8.15

Renaming the
lib directory

Figure 8.16

Adding the neces-
sary SWC files to
the library

144  ■   Chapter 8 : Browser-Based AR with ActionScript and FLARManager

the default web browser. An HTML file will be created in your project’s bin directory,

which you can then open in a browser.

A Tour of the FLARManager Examples
The preceding two sections cover most of the significant differences between running

the project in FlashDevelop and Flash Builder. You can open a file for editing by double-

clicking the filename in the Project viewer window and the Package Explorer window in

FlashDevelop and Flash Builder, respectively. Editing code in the text editor windows is

mostly self-explanatory, although both IDEs have their shortcuts and features with which

you might want to get better acquainted. Adding assets to the resources directory is done

by dragging and dropping in the same way for both IDEs. For the remainder of this chap-

ter, I’ll focus on things that should be essentially the same in both environments, such

as editing the code. For simplicity’s sake, when talking about files and directories in the

project tree, I will refer to the Package Explorer. If you’re using FlashDevelop, however,

you should understand this as referring to the Project viewer window.

We’ll turn to the code now to see how to run the various tutorial examples and sample

applications included in the FLARManager package.

As noted previously, the file being built and executed when you click the run but-

ton is FLARManagerExampleLauncher.as, which, as its name implies, is the launcher for the

example applications. Double-click that filename in the Package Manager to open the file

in the text editor.

For the moment, you can ignore the first few lines of the code. The main content of

this file is contained inside the public class definition of FLARManagerExampleLauncher. That

code is as follows:
//simply uncomment whichever tutorial/example you would like to launch.

//simple tutorials for 2D, 3D, and 3D external models

//this.addChild(new FLARManagerTutorial_2D());

//this.addChild(new FLARManagerTutorial_3D());

this.addChild(new FLARManagerTutorial_Collada_Away3D());

//this.addChild(new FLARManagerTutorial_Collada_PV3D());

//2D and 3D examples using only FLARManager and native AS3

//this.addChild(new FLARManagerExample_2D());

//this.addChild(new FLARManagerExample_Flash3D());

//3D examples using third-party 3D frameworks

//this.addChild(new FLARManagerExample_Alternativa3D());

//this.addChild(new FLARManagerExample_Away3D());

//this.addChild(new FLARManagerExample_Away3DLite());

//this.addChild(new FLARManagerExample_PV3D());

//this.addChild(new FLARManagerExample_Sandy3D());

//miscellaneous examples

//this.addChild(new FLARManagerExample_2D_Loader());

//this.addChild(new FLARManagerExample_Widescreen());

Getting FLARManager Up and Running  ■   145

You should notice immediately (thanks in part to the color-coded syntactic highlight-

ing of your IDE, which turns all comments green by default) that all the lines but one in

this function are commented out by double slashes (//) at the beginning of the line. This

means that the lines are not executed, just as in Processing and many other programming

languages. The one line that is not commented out calls the example that runs when you

execute the program.

By default, the line of code that is not commented is as follows:

this.addChild(new FLARManagerTutorial_Collada_Away3D());

This code creates an object of class FLARManagerTutorial_Collada_Away3D. You can

think of that as a mini-program being called inside this program. As its name suggests,

FLARManagerTutorial_Collada_Away3D is an example program showing how animated 3D

content in Collada (Collaborative Design Activity) format can be run in FLARManager

using the Away3D rendering engine.

To see the actual code that gets run here, look in the

Package Manager under the src/examples directory.

You’ll see 13 files there, all corresponding to lines that

are commented out in FLARManagerExampleLauncher.as.

Double-click FLARManagerTutorial_Collada_Away3D,

and the file will open in the text editor. Later, we’ll

look more closely at this code. For now, let’s see what

some of the other examples do.

To look at the 13 examples one by one, you simply

uncomment the line of code in FLARManagerExample

Launcher.as corresponding to the example you want to

see, and comment all the other lines of the code. Each

time you uncomment one of the lines, build and run

the project to see the example. For each example, note

the result.

Many of the examples are variations on the same

theme of cubes placed on the marker. Be sure to try

each example with multiple markers, as shown in

Figure 8.17. Different markers correspond to different-

colored cubes. The code for creating the cubes is

found in classes defined in the src/examples/support

directory, and it is shared by several of the examples.

The FLARManagerExample_Flash3D example is shown in

Figure 8.18. This uses the native Flash 3D API to draw

a textured plane over the marker (all markers behave

the same way in this example).

Figure 8.17

Colored cubes in
the 3D examples

Figure 8.18

A textured 3D plane
using Flash3D

146  ■   Chapter 8 : Browser-Based AR with ActionScript and FLARManager

Figure 8.19 shows the FLARManagerTutorial_Collada_PV3D.as example, which uses the

Papervision3D engine and its Collada loader to display an animated 3D model in the

Collada DAE file format. Likewise, the first example you saw when you initially installed

and ran FLARManager was FLARManagerTutorial_

Collada_Away3D.as, which also used a Collada file

to load an animated 3D model. The difference

is that the latter example uses the Away3D 3D

engine for Flash.

In addition to the simple example files,

the FLARManager package includes some

more complete applications for you to study.

To run these applications, you need first to

change the default build application from

FLARManagerExampleLauncher.as to FLARManager_

AppLauncher.as. Simply right-click on the name

of this file (located in src/(default package)/),

and choose Set As Default Application in Flash

Builder, as shown in Figure 8.20. In FlashDevelop,

choose Always Compile.

This launcher application works the same as the example

launcher. There are four function calls corresponding to four

different sample applications, and you uncomment the one

you want to run. The four applications are called MarkerBall,

MagicMarker, SequencAR, and WhackAMole. In the MarkerBall

application, shown in Figure 8.21, you use a marker to control

a bar to hit colored balls into the correspondingly colored wall

of the square. MagicMarker is an AR spray paint program that

enables you to draw directly in the browser window by moving

markers around (Figure 8.22). Different markers draw with dif-

ferent colors. The SequencAR application works like a simple

beat box. You line up different markers in a sequence, as shown

in Figure 8.23, to create a looping sequence of drum sounds. Finally, the WhackAMole

application is a game that enables you to use the AR marker to whack a famously unpop-

ular CG movie character over the head with a mallet.

These applications are your best references for continued study once you complete this

chapter, so be prepared to read the code closely!

Figure 8.19

An animated
model using the

Papervision3D engine

Figure 8.20

Setting the
AppLauncher as the
default application

in Flash Builder

Creating Your Own Projects  ■   147

Creating Your Own Projects
As much fun as it is to play with the ready-made examples from the FLARManager pack-

age, what you really want to do is to create your own. In this last section, you’ll look at

Figure 8.21

The MarkerBall game

Figure 8.22

Graffiti in your browser

Figure 8.23

An AR beat box

148  ■   Chapter 8 : Browser-Based AR with ActionScript and FLARManager

how to get your own 3D animated model into a Flash AR application and also take a

cursory look at simple tweaks you can make to existing examples to add interesting inter-

activity. Although you’ll be fiddling with the code here, this is by no means intended as a

substitute for learning ActionScript. If you want to go much further in creating your own

Flash applications, you’ll want to sit down and study it properly. Think of this section as a

basic icebreaker, where you can get a feel for what’s going on in the code.

Creating a New Example
You’re going to take a big shortcut here and simply adapt an existing example to use your

own animated 3D model and to add a bit of extra interactivity. I think this is always a

good way to learn new languages and APIs, and it will save you from having to learn all

of ActionScript from the ground up, while still covering some interesting points in using

FLARManager specifically.

To get started, copy the file FLARManagerTutorial_Collada_Away3D.as in your project and

rename it to FLARManagerTutorial_Collada_Away3D_annie.as. Don’t let your IDE do any

automatic class-name fixing for the time being.

Double-click FLARManagerTutorial_Collada_Away3D_annie.as in your Project viewer

window to open it up in your text editor. You will need to edit two lines to make the class

definition consistent with the filename. Edit line 41 from

public class FLARManagerTutorial_Collada_Away3D extends Sprite {

to
public class FLARManagerTutorial_Collada_Away3D_annie extends Sprite {

Also, edit line 61 from

 public function FLARManagerTutorial_Collada_Away3D () {

to
 public function FLARManagerTutorial_Collada_Away3D_annie () {

Finally, open the file FLARExampleLauncher.as in the text editor, and add this line inside

the FLARExampleLauncher() public function definition:

 this.addChild(new FLARManagerTutorial_Collada_Away3D_annie());

Once you’ve done this, you can move on to adding the 3D content you’ll need for the

new example.

Exporting and Importing 3D Content
If you want to use your own animated 3D models in FLARManager applications, the

first thing you need to do is to export them to a file that can be imported into your

ActionScript project and rendered by one of the 3D engines available to FLARManager.

Creating Your Own Projects  ■   149

Unfortunately, and as much as it pains me to say this, at the time of this writing it’s not as

straightforward to do this as it should be.

First, a bit of explanation. Collada is an XML-based open format for representing

3D content. In principle, Collada files should be able to encode everything that your 3D

software is able to produce, making it possible to transfer 3D content, including models,

materials, textures, and animations, from one 3D environment or application to another.

The extension for Collada files is .dae.

Both the Papervision3D and Away3D engines are able to do a good job of handling

correctly formed Collada (DAE) files. As you have already seen when running the

FLARManagerTutorial_Collada_PV3D and FLARManagerTutorial_Collada_Away3D examples in

the previous section, both engines can render textured, animated 3D models imported

from DAE files. Both of those animated models were exported from 3D Studio Max using

that software’s standard Collada exporter.

Blender also has Collada export functionality, and the good news for Blender users is

that improving this functionality is a scheduled project for the 2011 Google Summer of

Code. By the time you read this, the Collada exporter may be much improved. However,

as of this writing, neither the 2.58 exporter nor the 2.49 exporter can be relied on to

export DAE files that read correctly in Papervision3D or Away3D. Bummer!

Fortunately, there is a workaround, inelegant though it is. You can export your

animation from Blender 2.49 to the FBX format and use Autodesk’s free-of-charge

FBX Conversion software to output a well-formed DAE file that will read more or less

correctly in Away3D. (This method still does not read correctly in Papervision3D,

unfortunately.)

I’ll describe this method of creating your Collada file and importing it into Away3D.

By the time you are reading this, things may have changed (improved, hopefully!), so I

recommend you experiment with exporting your content from Blender 2.5.

Creating Collada Files
The most reliable way to create Collada files suitable for use in Away3D is to start by

exporting the model to the FBX format. This can be done in either Blender 2.49 or

Blender 2.58; FBX export for both versions works well. Select the model you want to

export, and choose File ➔ Export ➔ Autodesk FBX (.fbx) from the header menu, as shown

in Figure 8.24. The Blender File Browser window will open, and you can select where

the exported file is saved. The filename should have the .fbx extension. You can find the

annie.fbx file among the support files for this chapter.

150  ■   Chapter 8 : Browser-Based AR with ActionScript and FLARManager

To convert the FBX file to a Collada (DAE) file, you will need Autodesk’s propri-

etary but free-of-charge FBX Converter software. You can download the software from

Autodesk’s website here:

http://usa.autodesk.com/adsk/servlet/pc/item?id=10775855&siteID=123112

The interface of the Autodesk FBX Converter is shown in Figure 8.25. As you can see

in the toolbar along the top of the window, several tools are incorporated in this suite.

Before you use the FBX Converter to convert the file to DAE, it’s a good idea to use the

FBX Viewer to view your FBX file and make sure it looks the way you want it to. Do

this by clicking Add FBX Viewer. In the FBX Viewer window, click File in the lower-left

corner of the window, and then navigate to the FBX file you just created and select it.

Figure 8.26 shows the display of the annie.fbx file. You can change the camera angle, the

viewing mode, the display mode, and the speed of the animation display, among other

characteristics, by using the buttons along the bottom edge of the window.

When you are satisfied that the FBX file was exported properly, close the FBX Viewer

and open your FBX file in the FBX Converter, as shown in Figure 8.27. In the Destination

Format drop-down menu on the right side of the window, choose DAE Collada and then

click Convert.

Figure 8.24

Exporting the Shoo-
tin’ Annie model to
FBX in Blender 2.58

http://usa.autodesk.com/adsk/servlet/pc/item?id=10775855&siteID=123112

Creating Your Own Projects  ■   151

Figure 8.25

The Autodesk FBX
Converter

Figure 8.26

Viewing the FBX file

152  ■   Chapter 8 : Browser-Based AR with ActionScript and FLARManager

Drag the DAE file and the texture JPEG image from your desktop into the resources/

assets directory of your FLARManager project, as shown in Figure 8.28.

You now need to change the code to refer to the appropriate file in the assets direc-

tory. Turn on line numbering in the Text Editors preferences window (Window ➔

Preferences ➔ General ➔ Editors ➔ Text Editors), and then change line 55 from

[Embed(source=”../resources/assets/mario_tex.jpg”)]

Figure 8.27

Converting your file
from FBX to Collada

Figure 8.28

Dragging the files
into the project

Creating Your Own Projects  ■   153

to
[Embed(source=“../resources/assets/SA_small_color.jpg”)]

This will point to the appropriate image file for the texture.

Next change line 57 from
 [Embed(source=”../resources/assets/mario_testrun.dae”,

mimeType=”application/octet-stream”)]

to
[Embed(source=“../resources/assets/annie.dae”,

mimeType=“application/octet-stream”)]

This will point to the correct DAE file on your filesystem.

Next change line 108
model.materialLibrary.getMaterial(“FF_FF_FF_mario1”)

.material = new BitmapMaterial(Cast.bitmap(Charmap));

to
model.materialLibrary.getMaterial(“SmallSAMatt__SA_small_color_jpg_ncl1_1”)

.material = new BitmapMaterial(Cast.bitmap(Charmap));

This will tell the program how to find the material information from the DAE file. You

might wonder why the argument in this last line of code is AnnieMat__SA_small_color_jpg_

ncl1_1. This is a material ID generated by the DAE file creation process. You can find this

string by opening your annie.dae file in the text editor window and doing a search for

the string material id.

Once you’ve made these changes, build and run the program. You should see the ani-

mated model of Shootin’ Annie running along on top of your marker.

Adding Interactivity
The code for this example does not distinguish between markers. Any of the 12 avail-

able markers will be treated the same. Whichever one is recognized will get the character

drawn on top of it. In this section, you’ll make some changes such that only one of the

markers will act as a placement for the model, and another marker will be used to rotate

the model similarly to the example you worked on in Chapter 5, “3D Programming in

Processing” (although without translating the model). Specifically, we’ll use the marker

with pattern ID 0 (from the file patt001.png) and the marker with pattern ID 5 (from

the file patt006.png) shown

in Figure 8.29. Note that

the pattern IDs are counted

from 0, whereas the file-

names begin with patt001 and

Figure 8.29

Markers with
pattern IDs 0 and 5

154  ■   Chapter 8 : Browser-Based AR with ActionScript and FLARManager

count upward, so you need to subtract 1 from the index in the filename in order to find a

pattern’s ID number.

To use a second marker for the purpose of rotating the object, it’s necessary to create a

FLARMarker object to store the data of that marker. Do that by declaring a second variable

of type FLARMarker around line 50, just after where the object activeMarker is declared.

Call the new variable rotationMarker, and declare it with this line of code:

private var rotationMarker:FLARMarker;

Now that you’ve got this variable to work with, you can go ahead and rewrite some

important functions to deal with both markers separately The first function that needs

to be rewritten is the onMarkerAdded() function, which tells the program what to do when

the recognition algorithm spots a new marker in the viewport. The code in the demo

application is as follows:
 private function onMarkerAdded (evt:FLARMarkerEvent) :void {

 trace(“[“+evt.marker.patternId+“] added”);

 this.modelContainer.visible = true;

 this.activeMarker = evt.marker;

 }

So, what’s happening here? The first line simply declares that this is a definition of a

function called onMarkerAdded(), and that it takes an argument of a FLARMarkerEvent and

will be represented as the variable evt in the function definition:

private function onMarkerAdded (evt:FLARMarkerEvent) :void {

The next three lines of code are executed when the function is called upon, recogniz-

ing a marker. The first thing is a trace command, which is the rough equivalent of the

println command you saw earlier in Processing; it prints values to your debugger inter-

face so that you can see what’s happening with the variable values. In this case, it tells you

which marker is added by accessing the evt.marker.patternId value. This is the patternID

value of the marker associated with the marker event evt that was passed into the func-

tion as the argument. That is to say, this is the patternID value of the marker that has just

been recognized. The marker patternIDs are set when the marker pattern files are origi-

nally created. In this case, the patternIDs of the default marker patterns are numbered

from 0 to 11, with 0 corresponding to the image in file patt001.png.

The next line, this.modelContainer.visible = true;, sets the model to be visible in the

display. Finally, this.activeMarker = evt.marker; sets the value of this.activeMarker to the

marker that was just recognized.

To add some of the interactivity you played with in Chapter 5, we want to treat pat-

terns differently here. If the pattern with patternID 0 is seen, we want it to provide the

basis for the model’s coordinate space (which is what this.activeMarker does). However,

if the pattern with patternID 5 is seen, we want it to cause the model to rotate according

to the marker’s rotation. This is why we introduced the rotationMarker variable.

Creating Your Own Projects  ■   155

To assign the markers to the correct variables, we need to add some conditional if

statements that test for the patternID of the recognized marker. The function needs to be

rewritten as follows:
 private function onMarkerAdded (evt:FLARMarkerEvent) :void {

 trace(“[“ + evt.marker.patternId + “] added”);

 if (evt.marker.patternId == 0)

 {

 this.modelContainer.visible = true;

 this.activeMarker = evt.marker;

 }

 if (evt.marker.patternId == 5)

 {

 this.rotationMarker = evt.marker;

 }

 }

As you can see, the if statements ensure that the this.activeMarker value and the

this.rotationMarker are set only if the appropriate patterns are seen. The model will

be set to visible only if pattern 0 is recognized.

The next function that needs to be rewritten is onMarkerUpdated(). This function is

called for every frame (redraw) of the window in cases where a marker that has been

previously recognized is still recognized. If a marker is visible in the window persistently

for more than a single frame, the code in this function will be executed. The content here

isn’t much different from onMarkerAdded(). I’ve added a trace of the rotation around the

z-axis of the rotation marker.
 private function onMarkerUpdated (evt:FLARMarkerEvent) :void {

 if (evt.marker.patternId == 0)

 {

 this.modelContainer.visible = true;

 this.activeMarker = evt.marker;

 }

 if (evt.marker.patternId == 5)

 {

 trace(“rot: “+ this.rotationMarker.rotationZ + “.”);

 }

 }

Another marker-handling function needs to be rewritten. This is the onMarkerRemoved()

function, which handles what happens when a marker disappears from view or is no lon-

ger recognizable to the recognition algorithm.

The new function is analogous to onMarkerAdded(), but in reverse. If the patternID is

0, the model is set not to be visible with the line this.modelContainer.visible = false;

and the active marker is set to null. If the rotation marker (patternID 5) disappears, then

156  ■   Chapter 8 : Browser-Based AR with ActionScript and FLARManager

the this.rotationMarker value is set to null. It’s very important to do this. If your program

does not know that these variables are null, it will try to access information about the

marker’s position onscreen even when the marker is not visible, which will crash your

program.
 private function onMarkerRemoved (evt:FLARMarkerEvent) :void {

 trace(“[“+evt.marker.patternId+“] removed”);

 if (evt.marker.patternId == 0)

 {

 this.modelContainer.visible = false;

 this.activeMarker = null;

 }

 if (evt.marker.patternId == 5)

 {

 this.rotationMarker = null;

 }

 }

Finally, you need to change the function onEnterFrame(), which is called for every new

frame (redraw) of the program. The new function is as follows:

 private function onEnterFrame (evt:Event) :void {

 if (this.activeMarker) {

 this.modelContainer.transform =

 AwayGeomUtils.convertMatrixToAwayMatrix(this.activeMarker.∑

transformMatrix);

 this.modelContainer.moveBackward(50);

 if (this.rotationMarker) {

 this.modelContainer.roll(-this.rotationMarker.rotationZ);

 }

 }

 }

There are two conditional if statements in this function. The first one is if (this.

activeMarker), which simply checks whether this.activeMarker is null. If it’s not null,

the marker is visible and the rest of the code is executed. The model is positioned based

on the active marker’s transform matrix, and the other conditional if statement checks

whether this.rotationMarker is null. If this marker is not null, the model is rotated based

on the rotation marker’s rotation. This is done by setting the roll value of the model

container. The Away3D engine uses the variables pitch, yaw, and roll to control rotation

around the three axes.

Creating Your Own Projects  ■   157

When you’ve got this code written, execute your application. You should be able to

rotate the character using the marker as a “steering wheel,” as shown in Figure 8.30.

Custom Markers for FLARManager
To create FLARManager applications that are truly your own, you will want to create

your own markers. Again, you can use tarotaro’s online marker generator as described in

Chapter 1. This can be found at

http://flash.tarotaro.org/blog/2009/07/12/mgo2/

Figure 8.30

Rotating the
character with the
second marker

http://flash.tarotaro.org/blog/2009/07/12/mgo2/

158  ■   Chapter 8 : Browser-Based AR with ActionScript and FLARManager

You can create pattern files as described in Chapter 1. Choose either 8×8 or 16×16

marker segments. Lower numbers of marker segments enable quicker and more robust

recognition if the images used are sufficiently distinct at that resolution. Don’t use

higher than 16×16 marker segments. Also note that, when using more than one marker

in a given application, all markers must be set to the same resolution. When you’ve cre-

ated your pattern files, drag and drop them into the project under a subdirectory of

/resources. The sample patterns are located in the directory /resources/flarToolkit/

patterns/pat8, but you can put them wherever you like.

Finally, you need to edit the flarConfig.xml file to tell your application where to find

the patterns and what their resolution is. This is found in the /resources/flar directory

in your project. In both Flash Builder and FlashDevelop, if you double-click flarConfig

.xml, it will open in the built-in XML editor. You can also edit the XML in a plain text

editor, but this is a bit more challenging.

The pattern configuration data to be edited is shown in the Flash Builder XML editor

in Figure 8.31. As shown in the figure, the path for the pattern settings is flar_config/

trackerSettings/flarToolkitSettings/patterns. You need to set the resolution to be either

8 or 16, depending on the resolution you used to create your pattern files for the markers.

Below this, an arbitrary number of patterns is listed. The figure shows the default sample

pattern configuration, so there are 12

patterns. Under each pattern node in

the XML file is a path attribute. (The

figure shows this for the first pattern,

which shows the relative path to the

corresponding pattern file, beginning

with ../resources.) The patternID of the

pattern is derived from the order in the

XML of the patterns. The first one has

a patternID of 0, the next one has a pat-

ternID of 1, and so on.

When you’ve placed your pattern

files in the project and added their paths

to the flarConfig.xml file, you’re ready

to access them by their patternID and

use them in your programs.

Figure 8.31

Pattern
configuration data

Creating Your Own Projects  ■   159

Troubleshooting and Further Information
With so many interdependent technologies, and so many of them under active develop-

ment, there are a lot of places where things can go wrong. It’s not always easy to know

where to look for help. Of course, the place to start is in the documentation that comes

with the software or that is available on the website where you downloaded the software.

Studying the API will help you understand the functions and classes that are available to

you and how they work. Frequently encountered problems may be discussed in README

files or code comments. However, there are times when these sources are not enough, and

you will want to ask somebody for help.

For FLARToolKit-related questions, including FLARManager questions, the

FLARToolKit userz group at Google Groups is a good resource. You can find that here:

http://groups.google.com/group/flartoolkit-userz

If you’re using the Away3D engine and run into trouble, you may find the information

that you need at the Away3D website at http://away3d.com, or you may want to turn to the

Away3D Google Groups forum here:

http://groups.google.com/group/away3d-dev

For questions about Papervision3D, you can start with the Papervision3D website here:

http://blog.papervision3d.org/

The Papervision3D forum is temporarily down as of this writing. It may be up again

by the time you read this. In any case, there is a great interactive Papervision3D demo in

its place at the moment, so it’s worth checking out here anyway:

www.forum.papervision3d.org/

You can ask questions about Collada and DAE files here:

https://collada.org/public_forum/

Finally, if your problem deals with Blender export functionality, the Python Support

room at the Blenderartists.org forum is a good place to try:

http://blenderartists.org/forum/forumdisplay.php?11-Python-Support

There are solutions for most problems, but some of them require a bit of patience and

perseverance to get to, so don’t give up!

The Complete Code
The complete code for the FLARManagerTutorial_Collada_Away3D_annie class follows. For

reasons of space and clarity, the comments and authorship information from the code

http://groups.google.com/group/flartoolkit-userz
http://away3d.com
http://groups.google.com/group/away3d-dev
http://blog.papervision3d.org/
http://www.forum.papervision3d.org/
https://collada.org/public_forum/
http://blenderartists.org/forum/forumdisplay.php?11-Python-Support

160  ■   Chapter 8 : Browser-Based AR with ActionScript and FLARManager

files are not reprinted here. FLARManagerTutorial_Collada_Away3D_annie is adapted directly

from the FLARManagerTutorial_Collada_Away3D class created by Eric Sokolofsky, which is

part of the FLARManager package available at http://transmote.com/flar. A write-up

describing the original tutorial file can be found at

http://words.transmote.com/wp/flarmanager/inside-flarmanager/

loading-collada-models

This code should be contained in a file called FLARManagerTutorial_Collada_Away3D_

annie.as, which should be located in the src/examples directory of your FLARManager

project. The line this.addChild(new FLARManagerTutorial_Collada_Away3D_annie());

must be added to the FLARManagerExampleLauncher public function in the file

FLARManagerExampleLauncher.as. The Collada file annie.dae must be in the resources/

assets directory, as should the file SA_small_collor.jpg. Listing 8.1 provides the code for

the class.

L isting 8 .1:

The complete code for FLARManagerTutorial_Collada_Away3D_annie

package examples {

 import away3d.animators.Animator;

 import away3d.animators.BonesAnimator;

 import away3d.containers.ObjectContainer3D;

 import away3d.containers.Scene3D;

 import away3d.containers.View3D;

 import away3d.core.utils.Cast;

 import away3d.events.Loader3DEvent;

 import away3d.lights.DirectionalLight3D;

 import away3d.loaders.AbstractParser;

 import away3d.loaders.Collada;

 import away3d.loaders.Loader3D;

 import away3d.loaders.utils.AnimationLibrary;

 import away3d.materials.BitmapMaterial;

 import com.transmote.flar.FLARManager;

 import com.transmote.flar.camera.FLARCamera_Away3D;

 import com.transmote.flar.camera.FLARCamera_PV3D;

 import com.transmote.flar.marker.FLARMarker;

 import com.transmote.flar.marker.FLARMarkerEvent;

 import com.transmote.flar.tracker.FLARToolkitManager;

 import com.transmote.flar.utils.geom.AwayGeomUtils;

 import flash.display.Sprite;

 import flash.events.Event;

 import flash.geom.Rectangle;

 import flash.geom.Vector3D;

 import flash.utils.getTimer;

http://transmote.com/flar
http://words.transmote.com/wp/flarmanager/inside-flarmanager/loading-collada-models

Creating Your Own Projects  ■   161

	

 public class FLARManagerTutorial_Collada_Away3D_annie extends Sprite {

 private var flarManager:FLARManager;

 private var view:View3D;

 private var camera3D:FLARCamera_Away3D;

 private var scene3D:Scene3D;

 private var light:DirectionalLight3D;

 private var activeMarker:FLARMarker;

 private var rotationMarker:FLARMarker;

 private var modelLoader:Loader3D;

 private var modelContainer:ObjectContainer3D;

 private var modelAnimator:BonesAnimator;

		

 [Embed(source=“../resources/assets/SA_small_color.jpg”)]

 private var Charmap:Class;

 [Embed(source=“../resources/assets/annie.dae”,

 mimeType=“application/octet-stream”)]

 private var Charmesh:Class;

 public function FLARManagerTutorial_Collada_Away3D_annie () {

 this.addEventListener(Event.ADDED_TO_STAGE, this.onAdded);

 }

 private function onAdded (evt:Event) :void {

 this.removeEventListener(Event.ADDED_TO_STAGE, this.onAdded);

 this.flarManager

 = new FLARManager(“../resources/flar/flarConfig.xml”,

 new FLARToolkitManager(), this.stage);

 this.addChild(Sprite(this.flarManager.flarSource));

 this.flarManager.addEventListener(FLARMarkerEvent.MARKER_ADDED,	

 this.onMarkerAdded);

 this.flarManager.addEventListener(FLARMarkerEvent.MARKER_UPDATED,

 this.onMarkerUpdated);

 this.flarManager.addEventListener(FLARMarkerEvent.MARKER_REMOVED,

 this.onMarkerRemoved);

 this.flarManager.addEventListener(Event.INIT,

 this.onFlarManagerInited);

 }

 private function onFlarManagerInited (evt:Event) :void {

 this.flarManager.removeEventListener(Event.INIT,

 this.onFlarManagerInited);

 this.scene3D = new Scene3D();

 this.camera3D = new FLARCamera_Away3D(this.flarManager,

continues

162  ■   Chapter 8 : Browser-Based AR with ActionScript and FLARManager

 new Rectangle(0, 0, this.stage.stageWidth,

 this.stage.stageHeight));

 this.view = new View3D({x:0.5*this.stage.stageWidth,

 y:0.5*this.stage.stageHeight,

 scene:this.scene3D, camera:this.camera3D});

 this.addChild(this.view);

 this.light = new DirectionalLight3D();

 this.light.direction = new Vector3D(500, -300, 200);

 this.scene3D.addLight(light);

 var collada:Collada = new Collada();

 collada.scaling = 20;

 var model:ObjectContainer3D =

 collada.parseGeometry(Charmesh)

 as ObjectContainer3D;

model.materialLibrary.getMaterial(“SmallSAMat__SA_small_color.jpg_ncl1_1”).

material

 = new BitmapMaterial(Cast.bitmap(Charmap));

 model.mouseEnabled = false;

 model.rotationX = 90;

 this.modelAnimator =

 model.animationLibrary.getAnimation(“default”).animator

 as BonesAnimator;

 this.modelContainer = new ObjectContainer3D();

 this.modelContainer.addChild(model);

 this.modelContainer.visible = false;

 this.scene3D.addChild(this.modelContainer);

 this.addEventListener(Event.ENTER_FRAME, this.onEnterFrame);

 }

 private function onMarkerAdded (evt:FLARMarkerEvent) :void {

 trace(“[“ + evt.marker.patternId + “] added”);

 if (evt.marker.patternId == 0)

 {

 this.modelContainer.visible = true;

 this.activeMarker = evt.marker;

 }

 if (evt.marker.patternId == 5)

 {

 this.rotationMarker = evt.marker;

 }

 }

L isting 8 .1: (continued)

The complete code for FLARManagerTutorial_Collada_Away3D_annie

Creating Your Own Projects  ■   163

 private function onMarkerUpdated (evt:FLARMarkerEvent) :void {

 if (evt.marker.patternId == 0)

 {

 this.modelContainer.visible = true;

 this.activeMarker = evt.marker;

 }

 if (evt.marker.patternId == 5)

 {

 trace(“rot: “+ this.rotationMarker.rotationZ + “.”);

 }

 }

 private function onMarkerRemoved (evt:FLARMarkerEvent) :void {

 trace(“[“+evt.marker.patternId+“] removed”);

 if (evt.marker.patternId == 0)

 {

 this.modelContainer.visible = false;

 this.activeMarker = null;

 }

 if (evt.marker.patternId == 5)

 {

 this.rotationMarker = null;

 }

 }

 private function onEnterFrame (evt:Event) :void {

 if (this.activeMarker) {

 this.modelContainer.transform =

 AwayGeomUtils.convertMatrixToAwayMatrix(this.activeMarker.

transformMatrix);

 this.modelContainer.moveBackward(50);

 if (this.rotationMarker) {					

 this.modelContainer.roll(-this.rotationMarker.rotationZ);

 }

 }

 if (this.modelAnimator) {

 this.modelAnimator.update(getTimer() * .005);

 }

 this.view.render();

 }

 }

}

C hap te r 9

Prototyping AR with
jMonkeyEngine

jMonkeyEngine is  a powerful, Java-based game engine capable of

creating interactive 3D content for a variety of uses. jMonkeyEngine provides a lot of

high-level functionality for creating games and organizing assets and interactions.

The ARMonkeyKit is a framework built on the jMonkeyEngine, and it incorporates the

NyARToolKit AR libraries to provide a powerful toolset for prototyping AR applica-

tions on Windows.

In this chapter, you’ll learn about the following topics:

Introducing jMonkeyEngine and ARMonkeyKit■■

Exploring ARMonkeyKit■■

Thoughts from the developer■■

166  ■   Chapter 9 : Prototyping AR with jMonkeyEngine

Introducing jMonkeyEngine and ARMonkeyKit
jMonkeyEngine is an open source, Java-based game engine for people who want a versatile,

powerful platform for creating 3D games and interactive environments. jMonkeyEngine

is composed of a collection of libraries, known collectively as jME, and an optional SDK,

called jMonkeyPlatform, that provides higher-level tools and a user-friendly interface based

on the NetBeans IDE, a popular open source IDE and widely used alternative to Eclipse.

Programming with jMonkeyEngine requires a certain degree of comfort with object-

oriented programming in Java, but it is intuitive and fairly accessible as a game engine.

ARMonkeyKit is a framework for rapid prototyping of AR applications, based on the

jME libraries and NyARToolKit. AR researcher Adam Clarkson created ARMonkeyKit.

The idea behind ARMonkeyKit is to bring the AR power of NyARToolKit together with

the accessible 3D game programming tools of jMonkeyEngine.

Both projects are released under open source licenses. The latest version (3.0) of

jMonkeyEngine is released under the permissive BSD-2 license. This license allows

you to use the software in any way you wish, including incorporating the code into non–

open source projects, something that is forbidden by GPL-style “copyleft” licenses. The

ARMonkeyKit (like the NyARToolKit it incorporates) is released under the GPL.

Versions and Distinctions
jMonkeyEngine is an interesting and exciting project in its own right and, if you’re inter-

ested in 3D game programming (including for the Android platform), you should defi-

nitely check it out at http://jmonkeyengine.org. You can download the jMonkeyPlatform,

which includes the full set of libraries and SDK tools shown in Figure 9.1. Numerous

tutorials are available that will help you learn jMonkeyEngine 3.0, which is the current

version, in alpha release as of this writing.
Figure 9.1

The jMonkey
Platform

http://jmonkeyengine.org

Introducing jMonkeyEngine and ARMonkeyKit  ■   167

However, at present, ARMonkeyKit is based on an older version of the jME libraries,

version 2.0. Information about using jME 2.0 is harder to come by, and the higher-level

SDK tools based on the NetBeans IDE are not available for ARMonkeyKit. Rather, the

ARMonkeyKit is distributed as an Eclipse project directory. A break in development and

change in personnel between versions 2.0 and 3.0 of the jME meant that the API changed

rather significantly.

There are plans to upgrade the ARMonkeyKit to conform to jME 3.0, but it is not pos-

sible to say where development on this will be by the time this book is published. The best

way to delve into programming with ARMonkeyKit is to download the currently avail-

able version as described later in this chapter and to study the code. The code includes a

lot of helpful comments, so with some effort you should be able to find your way around.

This chapter will help to get you started.

Regarding the OS
jMonkeyEngine is available for any platform that can run Java, and the jMonkeyPlatform

runs smoothly on both Windows and Mac OS X. However, the ARMonkeyKit uses librar-

ies that enable integration between QuickTime video and Java to handle camera video. As

of version 10.6, Snow Leopard, OS X no longer supports the QuickTime/Java libraries on

which ARMonkeyKit depends.

This is not to say that ARMonkeyKit can’t be run on Mac OS X. Although some neces-

sary libraries are deprecated, it is likely that, with some effort, you can find the ones you

need and get them working on your OS X system. However, the creator of ARMonkeyKit

explicitly makes no claims about OS X support, and I personally ran out of patience in

my efforts to set up the environment on OS X. For that reason, I’m following the creator’s

lead and considering ARMonkeyKit to be, for all intents and purposes, Windows-based

at present. For Mac users determined to take a shot at getting ARMonkeyKit set up on

their system, I’ll offer what pointers I can.

Preliminaries
To use the ARMonkeyKit, you will need some resources installed on your system in

advance. Some of these you probably have already installed for exercises in previous

chapters.

Java Development Kit

You need an up-to-date Java Development Kit (JDK6), but you probably already have it.

The JDK was also required to use Processing, so if you have gotten this far in the book,

you should have already installed the JDK. If you do need to install it, find the appropri-

ate package for your platform here:

www.oracle.com/technetwork/java/javase/downloads/index.html

http://www.oracle.com/technetwork/java/javase/downloads/index.html

168  ■   Chapter 9 : Prototyping AR with jMonkeyEngine

If you are using a 64-bit version of Windows 7, don’t install 64-bit Java. Stick with the

32-bit version or you will have problems.

Java Media Framework

The Java Media Framework (JMF) is a framework for enabling Java applets and applica-

tions to incorporate video and other media. This is not a default part of the JDK, so it is

likely you don’t yet have it installed. You can get it here:

www.oracle.com/technetwork/java/javase/tech/index-jsp-140239.html

Eclipse IDE

Eclipse is the world’s most widely used open source, general-purpose IDE, and it is

extremely popular for Java development. It is not the basis for the jMonkeyPlatform,

which is based on another IDE, NetBeans, but ARMonkeyKit is distributed as an

Eclipse project, making Eclipse the most straightforward option for developing with

ARMonkeyKit. As mentioned in Chapter 8, “Browser-Based AR with ActionScript and

FLARManager,” Flash Builder is based on Eclipse, and the two share similar user inter-

faces. Furthermore, your installation of Eclipse for this chapter will also be useful in

Chapter 10, “Setting Up NyARToolkit for Android,” if you want to build NyARToolKit

for Android. The Android SDK is also designed around Eclipse.

You can download Eclipse from www.eclipse.org. Choose a recent version (Galileo,

Helios, or Indigo are all okay), and download either the Classic package or the Eclipse for

Java Developers package for your platform. Follow the instructions to install Eclipse.

Subversion Client	

Subversion (SVN) is one of several popular version control and release management sys-

tems for software development. It enables multiple developers to access and alter a code

base without interfering with each other’s work. Using SVN, software project managers

create repositories where the code is stored and from where developers or users can check

out the software, downloading a local copy of the software for themselves. Typically, open

source software projects are hosted on a version control server of some kind, and contrib-

uting developers access the software using a client for the version control software.

For software projects with a large user base, it’s customary to make the software avail-

able via simple download. However, in the case of some smaller projects, this may require

more effort and time than it’s worth. In these cases, people who want the software can

often access it using the appropriate version control client. In the case of ARMonkeyKit,

you can download the package using SVN.

The details for checking out a repository in SVN depend on the client you use,

which in turn depends on your OS, because different clients are available for different

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-140239.html
http://www.eclipse.org

Introducing jMonkeyEngine and ARMonkeyKit  ■   169

platforms. Likewise, the process of installing SVN depends on your OS. For Windows,

I recommend TortoiseSVN, available at http://tortoisesvn.net/downloads.html.

TortoiseSVN includes all you need to use SVN, nicely incorporated into the Windows

desktop environment.

If you’re a Mac user and you’ve decided to throw caution to the wind and try to get

ARMonkeyKit up and running on your system, I suggest the free 30-day trial version,

which is easily the simplest to install and most user-friendly GUI-based SVN client avail-

able for Mac. You can find it at www.versionsapp.com.

Another alternative is to use Subclipse, an SVN client that integrates directly into

Eclipse. You can learn about that here: http://subclipse.tigris.org.

QuickTime 7

You will need QuickTime 7, if you don’t already have it. You can download that here:

www.apple.com/quicktime/download.

WinVDIG

Windows users will need WinVDIG installed. This is a video digitizer for enabling

QuickTime to communicate with your webcam hardware under Windows. The

ARMonkeyKit requires version 1.0.1. Note that this is not the most recent ver-

sion. Changes made since version 1.0.1 cause problems for the current version of

ARMonkeyKit. You can download WinVDIG at www.eden.net.nz/7/20071008.

Installing ARMonkeyKit
To get ARMonkeyKit running on your system, you need to do two things: First, check

out the SVN repository. Next, import the downloaded directory as a project into Eclipse.

Checking Out the Code

To check out the ARMonkeyKit code from the SVN repository, first install TortoiseSVN.

When you’ve done this, you’ll find that some new SVN-related menu entries have been

added to the standard Windows menu that comes up when you right-click over the

desktop or over an open directory window. Specifically, an SVN

Checkout entry and a TortoiseSVN submenu appear, as shown in

Figure 9.2.

Choose SVN Checkout from this menu, and the Checkout dia-

log box will open, asking you for the URL of the repository and

the local directory where you want the code to reside on your com-

puter. The URL of the ARMonkeyKit repository is

http://armonkeykit.googlecode.com/svn/trunk

Figure 9.2

TortoiseSVN
menu entries

http://tortoisesvn.net/downloads.html
http://www.versionsapp.com
http://subclipse.tigris.org
http://www.apple.com/quicktime/download
http://www.eden.net.nz/7/20071008
http://armonkeykit.googlecode.com/svn/trunk

170  ■   Chapter 9 : Prototyping AR with jMonkeyEngine

Enter this into the URL field, and enter the local location you want to use for the

Checkout directory, as shown in Figure 9.3. (Note that on my Japanese operating system,

backslashes appear as yen signs.)

Another dialog box will display the progress of the Checkout box and list the files as

they are downloaded to your computer. When it’s finished, as shown in Figure 9.4, click

OK. Your revision might not match the one in the figure exactly. This shouldn’t be a

problem.

The Windows icon for the newly created directory will appear, as shown in Figure 9.5.

It looks like an ordinary directory, except that it has a green circle with a white check

mark on it, indicating that it has been successfully updated.

This directory now contains the complete ARMonkeyKit

project.

Importing the Project into Eclipse

Start Eclipse. If this is your first time opening Eclipse, you’ll

see the Welcome screen first. Click the workbench icon

shown in Figure 9.6. The first time you use Eclipse, you’ll

also be asked to create a workspace. The default for this is a

Figure 9.3

The Checkout dia-
log box

Figure 9.4

Completing the
checkout

Figure 9.5

The local SVN
directory icon

Introducing jMonkeyEngine and ARMonkeyKit  ■   171

directory called workspace in your home directory. Confirm this and continue on to the

Eclipse workbench.

In Eclipse, choose File ➔ Import, as shown in Figure 9.7. If you recall work-

ing in Flash Builder from Chapter 8, you should find the Eclipse workbench

familiar. The process of importing a project is also similar. On the Select

screen of the Import wizard, select Existing Projects Into Workspace and

click Next, as shown in Figure 9.8.

Figure 9.6

The workbench icon

Figure 9.7

Importing in Eclipse

Figure 9.8

Importing an exist-
ing project into the
workspace

172  ■   Chapter 9 : Prototyping AR with jMonkeyEngine

On the Import Projects screen, click Browse by the Select Root Directory field to navi-

gate to the directory you just created for ARMonkeyKit, as shown in Figure 9.9. Click

Finish.

You should now see the project directory tree displayed in

the Package Explorer window of the Eclipse workbench, as

shown in Figure 9.10. You can look at the contents listings of

directories and subdirectories by clicking the little triangle

icons to the left of the directory names. Take some time to

poke around in here to get a sense of what is in the project.

Before you attempt to run the project, there are some errors

you may need to address. ARMonkeyKit makes some calls to

deprecated API functions. By default, Eclipse is set up to pro-

duce an error for these cases. You need to tell Eclipse to ignore

them. With the ARMonkeyKit project directory selected in the Package Explorer, choose

Properties from the Project menu. In the Properties window, under Java Compiler, open

Errors/Warnings and change the Forbidden Reference drop-down menu selection from

Error to Ignore, as shown in Figure 9.11.

If you are working with a Windows 7 64-bit system, you may also have problems with

the QTJava.zip library in your build path. In the Properties window, go to Java Build Path

and click on Libraries to view any missing libraries. In Figure 9.12, the little × on the

library icon next to QTJava.zip indicates that the library is missing. To fix this, click Edit

and change the path for QTJava.zip to

C:\Program Files(x86)\QuickTime\QTSystem.

Figure 9.9

Importing an exist-
ing project into the

workspace

Figure 9.10

The project file
tree in the Package

Explorer

Introducing jMonkeyEngine and ARMonkeyKit  ■   173

Next, click the little triangle next to QTJava.zip, and check the path for the Native

Library Location, as shown in Figure 9.13. If it reads

C:/Program Files/QuickTime/QTSystem,

edit it to read

C:/Program Files(x86)/QuickTime/QTSystem.

Figure 9.11

Ignoring forbidden
references

Figure 9.12

Missing library
 reference for
QTJava.zip

Figure 9.13

Checking the Native
Library Location

174  ■   Chapter 9 : Prototyping AR with jMonkeyEngine

Doing so will ensure that the 32-bit version of the library is used, and it should elimi-

nate any remaining build errors. If you’re still having build-path problems, go back and

make sure that you have downloaded and installed the 32-bit versions of all the necessary

Java tools.

If you’re still following along on OS X, I can tell you that the QTJava.zip library should

reside on your system in /System/Library/Java/Extensions. Beyond this, I’m afraid you’re

on your own. If you do manage to get ARMonkeyKit up and running on OS X, by all

means, post the steps you took on the Web and send me a link. I’ll post it on the website

that accompanies this book.

Exploring ARMonkeyKit
If all has gone well, you should now have ARMonkeyKit compiling without errors in Eclipse.

Don’t worry if you have some warnings. To run the project, be sure your webcam is con-

nected (the program will crash if it cannot find a camera), and then choose Run As ➔ Java

Application from the Run menu, as shown in Figure 9.14.

The project includes multiple applications, several of

which are demonstrations of functionality. The first time you

run the ARMonkeyKit project, you’ll see a window like the

one in Figure 9.15, asking you to choose which application

to run. Once you’ve chosen one of these, it will become the

default run configuration. If you want to see the list again

when you run the project, you can choose Run As by right-

clicking on the ARMonkeyKit project in the Package

Explorer. You can also run individual examples

in the same way by selecting them in the Package

Explorer and right-clicking; then select Run As ➔ Java

Application.

For now, you’ll look at a specific example. I think

the most responsive and straightforward example is the

ARMaggie application, which demonstrates loading of

OBJ models. Choose the ARMaggie application shown

in the list (it may not appear in the same order as

shown in the Figure 9.15, but you will find it in the list).

An OBJ Model-Loading Example
When you run an ARMaggie, the first thing you’ll

see is the Select Display Settings dialog box shown

in Figure 9.16. You can choose the display dimensions or set the application to display in

full-screen mode here. There is also a drop-down menu for selecting the OpenGL library

Figure 9.14

Running the project
as a Java application

Figure 9.15

Choosing the
application to run

Exploring ARMonkeyKit  ■   175

to use, but you will not be changing this. For the time being, you can just leave all the set-

tings at their default values and click OK.

The ARMaggie application is a simple example

application that features an OBJ-format model that

follows the movements of the Hiro pattern marker.

By this time, you should have a Hiro marker

printed up, so you can use that with this application. Once you’ve confirmed the display

settings, two windows will appear. The main application window is shown in Figure 9.17.

By default, this application is configured to

use the head-up display (HUD) format to dis-

play the camera video. This shows the camera

video content in a small window in the lower-

left corner of the window. When you hold the

Hiro marker in view of the camera, the char-

acter will appear larger in the main window.

This is not how you have seen camera video

displayed in previous examples, but it is easy

to edit the code to switch the camera display to

fill the whole window, in which case the model

will appear to rest on the marker. You’ll see

how to do this when you look at the code of the

application.

Before looking at the code, however, there’s

something else important to understand. In

addition to the main application window, a second window came up when you ran the

application. This is the Scene Monitor shown in Figure 9.18. It’s important to check this

window because the scene graph and its nodes form

the basis of how jMonkeyEngine (and, by extension,

ARMonkeyKit) organizes the content of a scene.

Scene Graph and Nodes
The concepts of the scene graph and nodes are some

of the most important things to understand in using

jMonkeyEngine and ARMonkeyKit. The scene graph is

a tree-structured collection of objects representing 3D

assets or attributes in the scene. Some of the nodes of

the tree are group nodes, which in turn contain child nodes with more specific data asso-

ciated with them. jMonkeyEngine parses the data in the tree structure in such a way that

the 3D assets in the scene graph affect each other according to their position in the scene

Figure 9.16

Setting the display
settings

Figure 9.17

The application
window

Figure 9.18

The Scene Monitor

176  ■   Chapter 9 : Prototyping AR with jMonkeyEngine

graph. For example, a Light node attached to the Root node would provide lighting data

for the scene and illuminate nodes representing models at the same level of the tree.

Nodes are attached and detached from the scene

graph in the code, as you will see in more detail later in

this chapter. Values displayed for each node in the Scene

Monitor can be edited directly in the Scene Monitor for

runtime debugging, and they can, of course, also be set

in the code. The Scene Monitor itself can be set to display

or not to display when the application is run by means of

a line of code. You’ll see how all of this is done shortly,

but first let’s delve a little further into what the Scene

Monitor shows.

If you click on the Light node in the Scene Monitor

tree display, as shown in Figure 9.19, you’ll see the general

Light value settings. There are a lot of possible value set-

tings at each node of the tree—some of them are not used

in this example—but some of the values will probably be

intuitively clear just from a glance. The Global Ambient

value is the color setting (in RGBA) of the global ambient

light. In this case, with R, G, and B values set to 0, this is

black, meaning there is no global ambient light, only the

specific light sources represented by child nodes of the

Light node. Two Sided Lighting is turned on, enabling

mesh surfaces to be lit from both front and back. Finally,

the Light node is set to have rendering enabled.

The child nodes of Light represent a point light and a

directional light, with the values displayed in Figure 9.20

and Figure 9.21, respectively. These are the lights that

actually illuminate the scene. A point light is a light

source where the light emanates in all directions from a

single point. The direction of the light is determined by

the location of the point, which is set here in the Location

value. In this case, the x coordinate of the point light

is 50, and the y and z coordinates are 0, so the light is

placed directly on the x-axis. By contrast, the directional

light does not have a location specified. Directional light

affects an entire scene in the same way, coming from

the same direction (in this way, it mimics a very faraway

Figure 9.19

The Light node

Figure 9.20

The PointLight node

Figure 9.21

The DirectionalLight
node

Exploring ARMonkeyKit  ■   177

light source such as the sun, with practically parallel rays). Both of the light sources

have Ambient, Diffuse, and Specular values in RGBA format. Try editing these values by

clicking on the value field directly and manually entering numerical values (in the case

of RGBA values, the values should be between 0.0 and 1.0). You will see the color of the

lights change. You can also disable either of the lights or both of them by switching the

Enabled value to false.

The Wireframe node shown in Figure 9.22 contains values for wireframe drawing of

the scene. You can set the thickness of the line and toggle antialiasing (smoothing) and

rendering. You can also determine whether front faces,

back faces, or both are drawn in wireframe. Drawing

front faces in wireframe has the effect of a typical

wireframe-style render appearance, whereas drawing

back-face wireframes has the effect of a simple toon-style

contour line when the front faces are rendered solidly.

You can see the difference between front-face wire-

frame rendering and back-face wireframe rendering in

Figure 9.23.

The ZBuffer node contains settings that affect the way

transparent objects are drawn over other objects along

the z-axis of the view, as shown in Figure 9.24. The Test

Function determines whether a pixel is drawn to the z

buffer or not based on its alpha value.

Figure 9.22

The Wireframe node

Figure 9.23

Front-face and back-
face Wireframe
options

Figure 9.24

The ZBuffer node

178  ■   Chapter 9 : Prototyping AR with jMonkeyEngine

The Background node shown in Figure 9.25 represents the plane on which the camera

video is projected. This is the first node we’ve looked at that includes a spatial. A spatial is

an object in jME that takes up space in the 3D world and

can have location, rotation, and scale. Note that the term

“object” here is used in the same sense of object-oriented

programming, where an object is simply an instance of a

class. Thus, objects in general are data and not necessar-

ily spatial entities. This is as opposed to the Blender term

“object,” which refers to things in space. The Background

object is a spatial because it is a mesh object. The 2D tex-

ture is contained on a child node, shown in Figure 9.26,

which holds a variety of values concerning the mapping

and positioning of the texture, its alpha and RGB combine

properties, and other details.

The next node, the Hiro-affected AR node shown in

Figure 9.27, is the first node we’ve seen that is not a jMon-

keyEngine native node type. Rather, as you can probably

guess, it is a node type specific to ARMonkeyKit, which

in this application has been defined as the node

that handles all 3D content that is affected by

the Hiro marker. All the spatials inhabiting

child nodes of this node will have their position

and rotation governed by the Hiro marker. This

is the node that contains the data about the

position and orientation of the marker-affected

spatial node. You can use these variables if you

want to control something in the application

using the position or rotation of the marker.

Drilling down a bit deeper, you can see that

the content of the Hiro-affected node is an OBJ

file, which makes up a single node, shown in

Figure 9.28 with five child nodes, each labeled

MAGGIE.

These five child nodes each represent por-

tions of the mesh that together make up the 3D

character object. Although there are no textures

on this object, each of the mesh portions are

associated with their own material, and each of

Figure 9.25

The Background
node

Figure 9.26

The Texture 2D node

Figure 9.27

The Hiro-affected AR node

Exploring ARMonkeyKit  ■   179

these materials in turn has its ambient, diffuse, and specular color settings, as well as

other material attribute values.

The first of these mesh portions is shown in Figure 9.29. This portion of the mesh

represents the character’s eyes. It is the only part of the mesh that is partially transparent

(as you can see when looking at the character) and, for this reason, it is the only portion

that has a blend child node, as shown in Figure 9.30. Like the other mesh parts, it has a

material node, as shown in Figure 9.31. Note that the Ambient and Diffuse values for the

material are all (1, 1, 1, 0.7), meaning they are white with slightly over half-opacity value.

Choose the other mesh nodes to see if you can determine

which nodes correspond to which parts of the character

object. The second to last, for example, shown highlighted

in Figure 9.32, has material color values of (0.7, 0, 0, 1). This

represents slightly less than fully bright red, so you can sur-

mise that it is the pacifier. Try clicking on the RGBA values

and editing them directly, as shown in Figure 9.33. If you enter RGBA values (0, 1, 0, 1) as

shown, you will see the pacifier turn bright green.

Figure 9.28

The OBJ file node

Figure 9.29

Mesh node representing the
character’s eyes

Figure 9.30

Blend node for
transparency of the
character’s eyes

Figure 9.31

Material node for
the character’s eyes

180  ■   Chapter 9 : Prototyping AR with jMonkeyEngine

By now you should have a fairly clear idea of the overall meaning of the scene graph

and of how nodes interact with each other. It should be clear that attaching a node to the

scene graph is the equivalent of introducing its contents to the scene, and detaching the

node removes its contents from the scene. Understanding this will be helpful in the next

section as you take a look at the application’s code.

Studying the Code
To study the example further, open the ARMaggie.java code in the Eclipse text editor by

locating it in the Package Explorer, as shown in Figure 9.34. The full path to the file is

ARMonkeyKit/src/armonkeykit.examples.patternmarkers.modelloading/ARMaggie.java.

Double-click on the filename in the

Package Explorer to open the file in the text

editor. Toggle line numbers on by right-

clicking on the left margin of the text editor

and choosing Show Line Numbers from the

menu, as shown in Figure 9.35.

Figure 9.32

Values for the pacifier
material node

Figure 9.33

Changing the ambient color of the pacifier

Figure 9.34

The ARMaggie.java
application in the
Package Explorer

Exploring ARMonkeyKit  ■   181

To walk through the code, we’ll start at the end. This is where the main() function is

defined, which makes it possible for this file to be run as a freestanding application. The

main() function begins on line 129:

public static void main(String[] args) {

 ARMaggie app = new ARMaggie();

 app.setConfigShowMode(ConfigShowMode.AlwaysShow);

 app.start();

}

The first line of the content of the function creates a new object of type ARMaggie(),

called app. This is the application itself. The second line sets the application to show its

display options dialog box on startup. This is set to AlwaysShow. To turn off the display

options dialog box (the application will start up with default values, rather than letting

the user set them), this should be changed to NeverShow. Finally, the start() method

is called. This is a method defined in the jME class BaseGame, from which the ARMaggie

class inherits its attributes and methods. Object methods here are just like the ones you

learned about in Processing. They are functions that are defined with respect to specific

classes, and they are called from instances of objects by appending the method call to the

object name, separated by a period, as in the line app.start();.

Next, we’ll return to near the top of the file, where the definition of the ARMaggie class

begins on line 37, as follows:

public class ARMaggie extends ARMonkeyKitApp {

This line declares the class and states that the class extends ARMonkeyKitApp. This is

a commonly used feature of object-oriented programming languages such as Java. It

means that the ARMaggie class will have all the same variables and methods associated

with it as the ARMonkeyKitApp class, plus whatever has been added to ARMaggie. If the values

Figure 9.35

Toggling line
numbers on

182  ■   Chapter 9 : Prototyping AR with jMonkeyEngine

of variables or methods from ARMonkeyKitApp are not defined (overridden) in ARMaggie,

then they will default to their values from the definition of ARMonkeyKitApp.

ARMonkeyKitApp, in turn, extends the jME class BaseSimpleGame (you can see this

by looking at line 70 of the file where this class is defined, armonkeykit.core

.app/ARMonkeyKitApp.java. An easy way to find the file is to click your mouse in the

ARMonkeyKitApp (after the extends clause) and to press F3. This means that ARMaggie is also

a subclass of BaseSimpleGame, and it inherits the variables and methods of that class.

Lines 41 and 43 in ARMaggie.java declare two variables, markerProcessor and rtl, which

are instances of ARMonkeyKit classes for handling markers and events:

private PatternMarkerProcessor markerProcessor;

private NodeRotateTranslateListener rtl;

The definition of the ARMaggie() constructor, which is the special method a class uses

to create an instance of itself, begins on line 47 and is empty. When an instance is created,

the constructor of the super class ARMonkeyKitApp will be used.

The next few methods override methods from ARMonkeyKit with values specific to

ARMaggie. Beginning on line 61, the simpleInitARSystem() method is defined to initialize

the marker processor and event listener and to register the event listener to the marker

processor. This enables the event listener to communicate with the marker processor so

that marker movement can trigger events and influence transformations in the 3D space.

protected void simpleInitARSystem() {

 markerProcessor = initPatternProcessor();

 rtl = new NodeRotateTranslateListener();

 markerProcessor.registerEventListener(rtl);

}

The configOptions() method beginning on line 68 sets two configuration option

values:
protected void configOptions() {

 showSceneViewer = true; // enable or disable SceneMonitor

 showCameraFeedAsHUD = true;

}

The first option, showSceneViewer, enables or disables the Scene Monitor that you

looked at in the previous section. When this is toggled to true, the Scene Monitor is

displayed and the scene graph and its nodes can be viewed and edited during runtime.

If this is toggled to false, the Scene Monitor is not displayed. The second option,

showCameraFeedAsHUD, sets the camera video to be shown as a small head-up display in

the lower-left corner of the application window. If this is set to false, the camera video

feed is displayed normally, filling the entire background. As you noticed when you ran

the ARMaggie application, the head-up display option is set to true in this example.

The next method is a bit longer than the others, and it does a number of important

things that you will probably find a bit familiar from previous chapters. The method is

Exploring ARMonkeyKit  ■   183

called addMarkers(), but what it really does is register specific marker data to the marker

processor and also set up the marker-affected nodes and their child nodes containing 3D

content in the scene graph.

The first few lines of addMarkers(), beginning on line 78, create a PatternMarker object

called kanji. The createMarkerObject() method takes arguments representing the name

of the marker, the resolution of the marker, the pattern-file location, and the size of the

marker. The marker is then registered to the marker processor:

 PatternMarker kanji = markerProcessor.createMarkerObject(“kanji”, 16,

 “ardata/patt.kanji”, 80);

 markerProcessor.registerMarker(kanji);

The same thing is done for the Hiro marker:

 PatternMarker hiro = markerProcessor.createMarkerObject(“hiro”, 16,

 “ardata/patt.hiro”, 80);

 markerProcessor.registerMarker(hiro);

Next, on line 90 a node is created called hiroAffectedARNode. This is an object of class

Node and, as you can probably guess, it represents the Hiro-affected node in the scene

graph. The next line of code, line 91, attaches it to the scene graph, making it a child node

of the root node.

 Node arAffectedNode = new Node(“hiroAffectedARNode”);

 rootNode.attachChild(arAffectedNode);

Beginning on line 97, the node containing the character mesh is initialized and the

object is loaded. The spatial node is then positioned, given a bounding-shaped object, and

rotated to the desired orientation. Finally, on line 105, the maggie node is attached to the

arAffectedNode, creating the node structure that you saw displayed in the Scene Monitor.

 Node maggie = ObjectLoader.loadObjectFromFile(“maggie”,

 this.getClass().getResource(“maggie.obj”));

 maggie.setLocalScale(.2f);

 maggie.setModelBound(new BoundingSphere());

 maggie.updateModelBound();

 maggie.setLocalTranslation(0, 0, -30);

 maggie.setLocalRotation(Rotate.PITCH270);

 arAffectedNode.attachChild(maggie);

Finally, the arAffectedNode needs to be associated with the event listener, which is done

for the Hiro-affected node on line 112:

 rtl.associate(hiro, arAffectedNode);

Between reading this code and studying the Scene Monitor, you should begin to have a

sense of how the scene graph works and how to attach different kinds of assets and render

states to it.

184  ■   Chapter 9 : Prototyping AR with jMonkeyEngine

Other Functionality
ARMonkeyKit is usable but incomplete at the present. Run the different example applica-

tions to get a sense of what functionality is currently supported. Figure 9.36 shows the

ARVideoPlayer application, which uses a video texture on a plane.

More advanced functionality, such as supporting animated models and an update to

the jME 3.0 API, are pending. So keep your eyes on ARMonkeyKit for potentially useful

developments in the future.

Thoughts from the Developer
For some further insight into the background of ARMonkeyKit and into the directions

of AR technologies in general, I turned to Adam Clarkson, the creator of ARMonkeyKit

and a PhD researcher in the field of AR at the University of Durham. You can find out

more about Adam and his research at his university website here: www.dur.ac.uk/adam

.clarkson/.

Q: What initially attracted you to augmented reality research?

A: After completing a Bachelor of Science degree in computer science and specializing

in software engineering, I knew that I wanted to continue my academic career and move

toward research. I’ve always had an interest in the creative side of computing and digital

design, and I wanted to continue looking at novel methods of content creation and deliv-

ery. I had heard a little about augmented reality, but like most people, I was more familiar

with the term virtual reality, probably thanks to the media and films!

On applying to do my Masters by Research, my supervisor suggested that I might

want to look into augmented reality, as it was an area that seemed to mesh closely with

what I had done in the past and where I wanted to go. From the moment that I started,

Figure 9.36

A video-
textured plane

http://www.dur.ac.uk/adam

Thoughts from the Developer  ■   185

I was hooked. The more I read, the more I saw the immense possibility of this technol-

ogy, which has been around for a while but is becoming infinitely more possible with the

hardware we have easily available today.

Q: What motivated you to begin creating the ARMonkeyKit?

A: The first thing that I noticed when starting my research was that there were only

a limited number of frameworks available to enable developers to build AR systems. Of

these, many required quite a lot of groundwork and a sound understanding of AR princi-

ples in order to get up and running. Throughout my degree, I had used Java almost exclu-

sively for desktop applications, and as I felt comfortable with it as a language, I decided to

see whether there were many frameworks out there for AR in Java.

Although I did find one or two, they were quite early in development and still posed

a rather large barrier to entry. Add to that the fact that they usually required the use of

native video libraries and OpenGL calls to render the graphics, and I saw potential for a

new framework.

ARMonkeyKit was devised to satisfy the need for a rapid prototyping framework for

AR applications written in Java that used the popular JMonkeyEngine as a video frame-

work. ARMonkeyKit allows people to build a full AR application in a short amount of

time, without worrying about the technicalities of AR systems and using a video library

with which they are no doubt already familiar.

While the software is a piece of research, it is stable and usable, and as more and more

reports came through from people using it and thanking me, it spurred on the develop-

ment even though my research has moved away from the use of fiducial image markers,

on which ARMonkeyKit is founded.

[Author’s note: “Fiducial” or “fiduciary marker” refers to a physical object or pattern

used as a point of reference for computer vision. It is a technical term for the markers

used in AR.]

Q: Can you tell us a little bit about your own research or the research of others in

your department?

A: The research that provided a base for ARMonkeyKit was largely an experiment into

what different interaction techniques can be applied to augmented reality aside from the

standard ideas of looking at a marker through a camera. This led to me looking at using

markers as input devices, so occluding a marker from the scene triggered a button press,

and also looking at controlling other things using markers.

The eventual path of the research was to follow the traditional approach and allow

virtual content to be attached to markers, but then to take a diversion in terms of the

camera. Instead of having the notion of a “see-through” system, where the user moves a

camera and sees the object in place in the real world, I displayed everything on a monitor

and attached a virtual camera to a fiducial marker. In doing this, the user could control

the viewpoint shown onscreen by moving this fiducial, allowing them to explore other

186  ■   Chapter 9 : Prototyping AR with jMonkeyEngine

content freely. The example application here was to introduce a novel way of navigating

around 3D models of buildings, where you aren’t necessarily bothered about seeing the

“real world” as well as the content attached to the fiducials.

Some would instinctively argue that by not introducing virtual content into the real

world in an obvious manner, this is not augmented reality, but it is still making full use

of AR technologies: the spatial relationship between markers, and the provision of a tan-

gible interface for virtual content.

As I mentioned previously, all of this started out as a Masters by Research degree for

myself and, at that time, I was the only person in our department actively researching

augmented reality. However, as I progressed I quickly realized that I didn’t want this to be

a one-year project, and so I transferred to a PhD course.

With this came a fairly large shift in my research direction. With the extra time

afforded to me through doing a PhD, I began to look past the fiducial marker–based

approaches and started to look at augmented reality in unprepared environments. While

I think there is great potential in marker-based AR applications, they are restricted to

controlled environments, and my curiosity for the research area led me to question what

happens when you can’t introduce a fiducial, or you don’t know the dimensions of the

space you are in. After plenty of research, this is how I came across PTAMM [parallel

tracking and multiple mapping], which is the system I am now extending as part of my

PhD research.

As for my PhD, it is mainly concerned with providing a means of natural content

placement for markerless AR systems. PTAMM is providing the base, but my extension is

looking at the ways in which people want to interact with an environment to add content

and how the technology can facilitate that.

Q: What have been your experiences working with the PTAMM tools?

A: As a concept, PTAMM is still something that I find awesome. While the creators

specify that it be designed for use in mapping small workspaces, I have successfully

mapped whole offices with it. The mapping itself takes a bit of time, and can be frustrat-

ing on that scale, but it is certainly doable. There are some issues that are introduced

when you use the program on this scale, such as map points drifting away from where

they should be due to multiple perspectives of the same area. However, this is a small

price to pay when you are using the software out of its comfort zone, as it were.

The PTAMM library itself is nothing short of fantastic. From a programming point of

view, and with regard to extending the functionality, which is my aim, it is a solid base on

which to work. It is obvious that a great deal of thought has been put into the design of

the data structure that underpins the system, and that is crucial for me as the data set can

get very large when you are mapping areas as large as I am attempting to map!

The other thing that I find impressive about the PTAMM tool is its ability to work

with almost any camera I have thrown at it. A five-minute calibration using the built-in

Thoughts from the Developer  ■   187

tool, and you are ready to go with a new camera. On that front, I have found the best

results to be using a wide angle lens camera as suggested in the documentation. I’ve been

using it for a number of months now with a camera and a head-mounted display, and I

really think that wherever markerless tracking in augmented reality goes, PTAMM will

be right there with it.

Q: What do you think are some of the most interesting AR-related technologies or

applications out there right now?

A: In terms of what is available on the market right now, Microsoft’s Kinect has to be

one of the best examples of camera-based tracking. While it may seem like a novelty on

the face of it, the technology that is underpinning every aspect of it is very promising

for the future of augmented reality—especially at the price point for which you can pick

one up.

As an outright augmented reality system, I’d have to choose applications such as

Layar and other similar mobile apps. Mobile AR is a great platform, and it is something

that I intend to get involved in sooner rather than later. The power of smartphones now

provides such a perfect base that it would be foolish not to take full advantage of them.

In addition to this, it’s refreshing to see that QR codes are being used more and more in

advertising campaigns. I even saw one on a TV advertisement last night, which will pro-

vide a gateway and make more and more people aware of the idea of fiducials and prepare

them for when augmented reality really hits the market hard.

I do reserve a special mention for the marketing on the recent Star Trek film (2009),

which was one of the first augmented reality apps I saw. It is a model that has become

more commonplace now, that a brochure or a printable document from a company’s

website bears a fiducial, and it allows you to view more content by holding it in front of

you webcam. This kind of AR might not be pushing the bounds of the technology, but

it is getting it into the mass market and I find that to be very interesting in proving the

validity of AR as an interaction technique.

Q: Where do you see AR going in the future? Are there any especially exciting direc-

tions you imagine things moving in?

A: Mobile. It’s all going to be about mobile, in my opinion. Until they perfect a contact

lens that has a display built in, or regular glasses that can be used as a display medium,

but even then I think it will be a smartphone powering the display. I also think that as

technologies like PTAMM become stronger, more stable, and faster at mapping, we will

see the end of fiducial-based AR. While it has a great place in the early development of the

technology and particularly the commercial market, I see the fiducial as a stepping stone

on to content being placed more naturally into environments.

I also think there is an obvious future in learning and training applications. By being

able to replicate certain situations in a real environment but making use of virtual con-

tent, it is possible to provide a better stage for learning. Take the medical profession, for

188  ■   Chapter 9 : Prototyping AR with jMonkeyEngine

example. Medicine is often at the forefront of new technologies in all areas, and aug-

mented reality is no different. By enabling a surgeon to practice techniques using real

equipment but on a virtual patient, you give them more learning time in a safe environ-

ment. Additionally, with the right display technology, AR can be used to provide useful

feedback to a surgeon during an operation on a real patient.

I mentioned Layar as an example of a very successful mobile app that is out at the

minute. I think apps such as these are already providing the basis for the future of aug-

mented reality. There are thousands of people out there using apps like Layar that don’t

have a clue that they are using augmented reality technology, and they probably wouldn’t

know what it was if you asked them. This is the future for me. AR should be an enabling

technology, a transparent layer that the general consumer sees as a natural interac-

tion between their virtual content and the world around them. Be it in an office space

where virtual 3D models are placed on a meeting table and discussed, videos are viewed

by looking at a wall, or on the move picking up navigation information and estimated

arrival times, it will eventually become a natural part of task completion. Apps like Layar

might be there already, and that’s just proving that augmented reality certainly has a big

future ahead.

C hap te r 10

Setting Up NyARToolkit
for Android

Smartphones represent  a major milestone on the road to AR

ubiquity with their integrated camera and display, constant connectivity, and near

universal adoption. Android has become one of the most popular mobile platforms in

the world. It is open source and Java-based, and the Android SDK is very well supported

and documented, making it an ideal place to begin with mobile AR application develop-

ment. This chapter will show you the basics of getting an AR application up and running

on an Android-based mobile device.

In this chapter, you’ll learn about the following topics:

Android and the Android SDK ■■

NyARToolkit for Android■■

Going further with Android■■

190  ■   Chapter 10 : Setting Up NyARToolkit for Android

Android and the Android SDK
The last few years have seen smartphones become the standard for mobile devices.

Smartphones are handheld computers capable of running a vast array of third-party

applications created under (to various degrees) open development models. Cameras are

standard on these phones, as are displays with all the functionality of small computer

monitors. Because they are connected to wireless phone networks, they have access to the

Internet almost all the time. Location-aware functionality is standard, and accelerometer-

based tilt and direction sensitivity is also common.

All of these features, plus the fact that nearly everybody has a smartphone, make

smartphones a natural fit for many kinds of AR applications. Location- and direction-

aware applications such as junaio, Wikitude, and Layar can provide powerful location-

annotation services. Meanwhile, computer vision–based AR applications, such as those

described in this book, can take advantage of the device’s camera and constant connec-

tivity to augment the user’s view with 3D content anywhere.

Android is Google’s open source, Java-based mobile operating system. Because it is an

open platform, it is not associated with a specific device. Rather, a wide variety of devices

on a variety of mobile carriers run Android. Handsets from HTC, Samsung, Motorola,

and numerous other smaller players all use Android as their OS. In 2010, Android shot to

near the top of the list of the most widely adopted operating systems.

Developers interested in creating applications for Android have an excellent set of

resources available to them in the well-supported and well-documented Android SDK.

In this chapter, you’ll see how to set that up in Eclipse and how to run the NyARToolkit

sample application on your Android hardware.

What You’ll Need
There are a few requirements for following along with this chapter, both in terms of

hardware and software.

Hardware

The most important thing you’ll need to have on hand to get the most out of this chapter

is an Android device. Any Android smartphone that runs Android version 2.1 or later

should do for the version of NyARToolkit you’ll be working with in this chapter. If you

have an older Android version, you can use an older version of NyARToolkit, but the

details of getting it to run might be slightly different from what is presented here.

This requirement is a bit exceptional. Typically, Android development does not abso-

lutely require having an Android device on which to develop. The Android SDK includes

emulator software that enables you to run Android applications on your desktop without

Android and the Android SDK  ■   191

any external hardware. However, at present the emulator does not have the capability to

access your computer’s camera directly as though it were the device’s camera.

Earlier versions of the NyARToolkit (version 2.52) for Android had some limited sup-

port for viewing in the emulator that has since been dropped (hopefully temporarily).

This was a rather convoluted setup. Rather than getting video directly from the com-

puter’s webcam hardware, the NyARToolkit environment could be set up to receive a

stream of video frames from the Web via HTTP. You could then run a separate webcam

broadcaster, which would create a web server on your machine whose sole purpose was

to stream your camera’s video to a URL. Currently, no version of NyARToolkit works out

of the box (without a lot of fairly advanced Java tweaking) with the emulator, but if you

are a skilled Java hacker, you can search online for how to display webcam content in the

Android emulator, and you will find several code samples that should help you set this up

yourself.

There are plenty of easier ways described

throughout this book to run AR applications

on your desktop, though. This chapter’s

main focus is getting the NyARToolkit

up and running on a mobile device.

My own Android device is the

Huawei IDEOS shown in Figure 10.1.

It’s the least expensive Android handset I

could find, and it’s one of the only ones available

where I live (Japan) without restrictive (and usually

permanent) SIM card locking. It’s far from a 3D power-

house, but it’s sufficient to run graphical applications such

as NyARToolkit. It runs Android v2.2. NyARToolkit version 3.0

should run on any Android device running v2.1 or later.

Software

The software you’ll need is all available free of charge, and much of it is open source.

Some of it is also likely already installed on your computer if you have been working

through other chapters of this book.

You will need the Java Development Kit (JDK) 6. If you have been working with

Processing or ARMonkeyToolkit, then you should already have this installed, and you

shouldn’t need to worry about it. If not, it is available from www.oracle.com/technetwork/

java/javase/downloads/index.html.

Install the version for your platform. If you are on a 64-bit version of Windows 7,

though, do not install the 64-bit version of the JDK6. Go with the 32-bit version instead.

Figure 10.1

A Huawei IDEOS
Android phone

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

192  ■   Chapter 10 : Setting Up NyARToolkit for Android

You will need a fairly recent version of Eclipse (versions Galileo, Helios, and Indigo are

all okay). If you have previously worked with ARMonkeyToolkit, you should already have

this installed. If not, get it here: www.eclipse.org/downloads/. Download either the Classic

configuration or the Eclipse for Java Developers configuration.

Finally, you’ll need to download the Android SDK. You can find it here: http://

developer.android.com/sdk/index.html. Download the SDK archive, and unzip it to an

accessible place on your hard drive. Your computer’s home directory is a good choice.

You’ll also need the Android Development Tools (ADT) Plug-in for Eclipse, but you

will download and install this plug-in from within Eclipse, as discussed in the next

section.

Setting Up the Android SDK in Eclipse
Once you’ve downloaded and unzipped the Android SDK, you’ll need to prepare your

Eclipse environment to use it. This also involves installing the Android Development

Tools Plug-in.

To do this, start Eclipse. From the Help menu, choose Install New Software, as shown

in Figure 10.2. When you do this, the Install dialog box shown in Figure 10.3 will open.

To the right of the field labeled Type Or Select A Site, click the Add button to add a new

site from which to download software.

Fill in the fields of the Add Site dialog box as shown in Figure 10.4. For the Name field,

enter ADT Plugin. For the Location field, enter the URL

https://dl-ssl.google.com/android/eclipse/.

Then click OK.

The Install dialog box should now look like Figure 10.5, with the Work With field dis-

playing the URL you just entered and Developer Tools displayed in the software window.

If you click the triangle icon to the left of Developer Tools, you will see a more detailed

listing of the contents. Click Next.

Figure 10.2

Preparing to install
the ADT Plug-in

http://www.eclipse.org/downloads/
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
https://dl-ssl.google.com/android/eclipse/

Android and the Android SDK  ■   193

Figure 10.3

Choosing software
to install

Figure 10.4

Entering the loca-
tion for the ADT
Plug-in

Figure 10.5

Selecting Developer
Tools for download

194  ■   Chapter 10 : Setting Up NyARToolkit for Android

You’ll go through some more standard boilerplate dialog boxes. When you’re asked

to review the items for download, click Next. When you’re asked to review the licenses,

choose the “I accept the terms of the license agreements” radio button and click Next.

When you’re asked to restart Eclipse, click Restart Now.

If all went as it should have, then you should

now have the Android Development Tools

Plug-in installed in Eclipse. You can verify this

by making sure that the Android SDK and AVD

Manager entry is present in the Window menu,

as shown in Figure 10.6. Open this now to finish

downloading the necessary packages.

In the Android SDK and AVD Manager,

choose Available Packages, as shown in

Figure 10.7. This shows all the Android packages

and revisions available for download. Check both

Android Repository and Third Party Add-Ons.

You don’t need all the third-party add-ons, but there’s no particular benefit in picking

and choosing. Downloading them all is simpler. Click Install Selected, choose the Accept

All radio button in the license confirmation dialog box, and then fix yourself a cup of

coffee while the whole shebang installs.

Once you’ve installed all the packages, there’s one more thing you haven’t yet done to

set up your Android development environment: Eclipse still doesn’t know where you put

the Android SDK directory that you downloaded at the beginning of this section. Open

Preferences from the Window menu, and click on Android for the Android Preferences

window. Beside the field labeled SDK Location, click the Browse button and navigate to

Figure 10.6

The Android SDK
and AVD Manager in

the Window menu

Figure 10.7

Browsing available
packages

Android and the Android SDK  ■   195

the location of your Android SDK directory, as shown in Figure 10.8. When you’ve done

so, click Apply.

Creating a Virtual Device
An Android Virtual Device (AVD) is a platform to which Android apps can be built so

that they run in the desktop emulator. To run an Android app in the emulator, you must

first define at least one AVD and set parameters, such as the Android version that it runs,

its memory allotment, and various other optional specifications.

Although you can’t test the camera behavior through the emulator, setting up an AVD

is a standard part of preparing to do any Android development. In this case, it will at least

enable you to ensure that the application builds and runs without show-stopping errors

before connecting your hardware and building to the device.

You add an AVD using the Android

SDK and AVD Manager that you used to

install and revise packages previously. You

can access this via the Android SDK and

AVD Manager entry in the Window menu,

as described in the previous section. In

the Android SDK and AVD Manager, click

Virtual Devices to see the list of virtual

devices (which is empty by default), as

shown in Figure 10.9. To add a new virtual

device, click New.

Figure 10.8

The SDK Location
field in the Android
preferences

Figure 10.9

Adding a virtual
device (AVD) in
the ADT Plug-in

196  ■   Chapter 10 : Setting Up NyARToolkit for Android

A Create New Android Virtual Device window will open, as shown in Figure 10.10.

Give your AVD a name in the Name field. Since you will be creating only one AVD for

the time being, you can name it some-

thing simple, like My_AVD. Of course,

if you want to use the emulator to test

an application for various Android

device configurations, you should

give the AVD a descriptive name.

For this one, set the Target either to

Android 2.1 or Android 2.2. I set it

to Android 2.2 because that’s the ver-

sion used by my handset. The other

values can all be left exactly as they

are. When you click Create AVD,

you’ll see the AVD appear in the list

of devices in the AVD Manager, as

shown in Figure 10.11.

You’re now ready to begin running

software in the emulator.

NyARToolkit for Android
NyARToolkit for Android is another port of the same NyARToolkit that you’ve encoun-

tered in several guises throughout this book. You saw the NyARToolkit for Processing

and the FLARToolkit, which was in turn based on NyARToolkit. All of these are ports or

variations of the original ARToolkit from HitLab at the University of Washington.

Figure 10.10

Virtual device
settings

Figure 10.11

A device in the
AVD Manager

NyARToolkit for Android  ■   197

NyARToolkit for Android is developed by the Japan Android users group, and unfortu-

nately very little exists in terms of organized online documentation; what little does exist

is mostly written in Japanese. For this reason, if you want to go much further than the

introductory steps of this chapter, you will need to immerse yourself in Java programming

for the Android environment in order to study the code directly. You can download the

latest package from http://sourceforge.jp/projects/nyartoolkit-and/. As of this writing,

the latest available version is version 3.0.0. Download the file NyARToolkit_Android_v3.0

.0-1os2.1.zip and unzip it in an accessible place on your hard drive to get started.

Importing and Running the Project
Importing an existing project into Eclipse is straightforward. Choose File ➔ Import to

bring up the Select screen of the Import wizard, shown in Figure 10.12. Select Existing

Projects Into Workspace, as shown in the figure, and click Next.

On the next screen, Import Projects, click Browse and navigate to your unzipped

NyARToolkit directory, as shown in Figure 10.13. Make sure Copy Projects Into

Workspace is checked, and click Finish.

At this point, your mileage may vary somewhat depending on your own computer’s

configuration. If no errors are reported right off the bat, you can skip the next few trou-

bleshooting steps and go straight to running the Android application in the emulator.

However, when I initially imported NyARToolkit version 3.0 on my system, 413 errors

popped up immediately. You can see any errors by clicking on the Problems tab in your

Eclipse desktop, as shown in Figure 10.14.

Figure 10.12

The Select screen of
the Import wizard

http://sourceforge.jp/projects/nyartoolkit-and/

198  ■   Chapter 10 : Setting Up NyARToolkit for Android

None of the errors’ descriptions give much of a hint as to the actual problem here, but

it turns out that, in my case, all 413 of these errors originate from the same simple cause:

the text encoding is incorrect, making problems for code files that incorporate Japanese-

language comments.

If you don’t read Japanese, you probably don’t see a huge difference between the two

encodings shown in Figure 10.15, but there’s a big difference. The first one is utter gibber-

ish, and the second one is properly commented code (as a hint to be able to recognize the

difference, note that the gibberish one is a more densely packed–looking series of symbols

and includes diamonds, arrows, and other noncharacter symbols). To see the files causing

Figure 10.13

Importing the
project

Figure 10.14

A ton of errors

NyARToolkit for Android  ■   199

the errors, double-click on the Resource column for the error in the Problems window. It

is likely that you’ll see garbled Japanese.

To fix the problem, choose Edit ➔ Set Encoding, as shown in Figure 10.16. In the Set

Encoding dialog box, click the Other radio button and choose UTF-8 from the drop-

down menu, as shown in Figure 10.17.

Unfortunately, although it is possible to set a default encoding for all text files in a proj-

ect, I have found that this seems to work only for newly created files. I haven’t found a way

to switch all existing files to UTF-8 in one stroke. (I invite readers who know how this can

be done to contact me to let me know.) This means that each file must be switched indi-

vidually by calling it up in the editor and changing the encoding as described previously.

The good news is that you will find that many of the errors are in the same files, so there

are far fewer than 413 files that need to be changed.

Figure 10.15

Gibberish vs.
Japanese

200  ■   Chapter 10 : Setting Up NyARToolkit for Android

If an error does not seem to go away when you change the file’s encoding, simply

ignore it and change the encoding of the other files. Once all the problematic files have

been set to UTF-8, all the problems should

disappear. When there are no more errors,

run the project by clicking the icon.

In the Run As dialog box, choose Android

Application, as shown in Figure 10.18.

If everything has been configured cor-

rectly, running your application from

Eclipse in this way should automatically

start the emulator, install the application,

and execute the application on the AVD

in the emulator. Of course, you already

know that the result won’t be quite what

you might hope for. The emulator has no

Figure 10.16

The Set Encoding
menu entry

Figure 10.17

Setting the encod-
ing to UTF-8

Figure 10.18

Running as an
Android project

NyARToolkit for Android  ■   201

access to a camera, so the video content is displayed as a standard animated placeholder of

a moving plane over a black-and-white-checkered background, as shown in Figure 10.19.

It’s not very exciting to look at, but you should be pleased to have gotten this far; the appli-

cation is running without problems. You can now set up your device to see it do what it’s

supposed to do. Shut down the emulator, and turn your attention to your Android device.

Setting Up Your Device
Setting up an Android device for development can be very simple or somewhat more

complicated. In this respect, Mac OS has the advantage over Windows, at least in my

own experience with the IDEOS, which a bit of investigation has shown me is at least

somewhat general to other Android handsets. On Mac OS X, you should simply be able

to plug and play. First, set your Android device to enable USB debugging. Go to Settings ➔

Application ➔ Development to find the USB debugging toggle switch, and make sure it’s

turned on. Then simply connect your Android device to your computer’s USB port, and

run your application again. Your Eclipse/ADT development environment should auto-

matically recognize the presence of an Android device and install and run the application

on your device. It’s that easy! (Developers accustomed to working with iOS development

Figure 10.19

Running in
the emulator

202  ■   Chapter 10 : Setting Up NyARToolkit for Android

will be especially impressed by how easy it can be to install software on a smartphone

from a Mac.)

For whatever reason, Windows systems may require you to install a driver for your

Android phone before you get to plug and play as you can with Mac OS X. Where you

get this driver depends entirely on your hardware, so I

can’t give you specific instructions. I can give you a few

hints that might help shorten your Google time, though.

In the case of my IDEOS phone, the Windows driver can

be found on the phone itself. Getting at the driver is a

bit unintuitive. When you connect the phone to upload

the driver, both USB debugging and data sharing should

be disabled. This will cause the phone to be displayed

as an external drive containing the driver. Install the

driver, and then turn USB debugging back on to run the

software.

Finally, with the device connected by USB, run the

application. The application will be installed in your

phone (you may have to wait a few minutes), and it soon

should start running. You’ll see a video display of the

camera view, and when you point your camera at a Hiro

or kanji marker, you’ll see an animated Android droid

character, as shown in Figure 10.20.

Congratulations! You’ve managed to install and run

an AR application for Android!

Going Further with Android
NyARToolkit for Android is under active development, and it remains in a state of con-

stant flux, with new features being added (and occasionally dropped) with regularity.

It’s very much a tool for programmers, and you will need to become proficient in Java

development for Android in order to take advantage of it. Unlike some of the other imple-

mentations you’ve seen throughout this book, there isn’t a simple template that an inex-

perienced programmer can tweak easily to make changes to the content.

3D Assets for NyARToolkit for Android
Up until recently, the NyARToolkit for Android had the quirk of depending on the

Metasequoia (MQO) format for 3D assets. Metasequoia is a freeware (free-of-charge,

closed source) and shareware application for 3D modeling and texturing that is popular

in Japan, but much less so elsewhere. Metasequoia is available for Windows only, and it

Figure 10.20

NyARToolkit
on IDEOS

Going Further with Android  ■   203

can be downloaded at www.metaseq.net/english. An exporter for Blender 2.58 to MQO

format exists and can be found here:

http://pr0jectze10.tuzigiri.com/simpleVC_20101030133458.html.

NyARToolkit v. 3.0 can also import from the MD2 format, which currently has rudi-

mentary export support from Blender 2.58. Plans are underway to implement OBJ sup-

port in NyARToolkit for Android, which will be a welcome improvement.

Learning Resources
Knowing the fundamentals of object-oriented programming in Java will make it much

easier to study the NyARToolkit code yourself so that you can find out where the various

functionalities are defined and how they are used. A number of Android programming

books also offer gentle introductions to Java, and I recommend that you start with one of

these if you plan to go further with Android development.

There are different approaches to take to learning Android development. For extend-

ing the NyARToolkit example, you’ll need to know something about working with Android’s

OpenGL ES implementation. Beginning Android Games by Mario Zechner (Apress 2011)

is a good place to start.

For background study of 3D development on mobile devices, The OpenGL ES 2.0

Programming Guide by Aaftab Munshi, Dan Ginsburg, and Dave Shreiner (Addison-

Wesley Professional 2008) is a good general guide for 3D programming with OpenGL ES,

the standard OpenGL implementation for mobile devices, and the one used by Android.

While this guide won’t necessarily give you a lot of hands-on Android programming

examples, it will help to deepen your understanding of how 3D is handled on mobile

devices.

Studying OpenGL ES, however, presupposes a decent level of familiarity with OpenGL.

Tons of OpenGL tutorials and books are available and, in my opinion, you should study

some of these if you plan to do any kind of 3D programming at all. The NeHe tutorials

(http://nehe.gamedev.net) for OpenGL are very well known, and I highly recommend

following them. I also recommend the OpenGL SuperBible: Comprehensive Tutorial and

Reference by Richard S. Wright, Nicholas Haemel, Graham Sellers, and Benjamin Lipchak

(Addison-Wesley Professional 2010).

There’s a lot to learn about programming for Android, and indeed about program-

ming for all the platforms and environments described throughout this book. I’ve only

just scratched the surface here, but I hope that, through reading this book, you’ve begun

to get a sense of some of the interesting possibilities of AR development. If anything here

has inspired you to learn more, I’ve done what I set out to do. AR is an exciting and fast-

moving field, and I hope that you will soon be having fun contributing to it.

http://www.metaseq.net/english
http://pr0jectze10.tuzigiri.com/simpleVC_20101030133458.html
http://nehe.gamedev.net

Appendices

Appendix A  ■   From Blender 2.49 to Blender 2.58

Appendix B  ■   File Formats and Exporting

Appen d ix A

From Blender 2.49 to Blender 2.58

In Chapter 3,  “Blender Modeling and Texturing Basics,” and Chapter 4,

“Creating a Low-Poly Animated Character,” you learned to create animated 3D content

in Blender. For reasons described in Chapter 3, the version chosen for that was Blender

2.49, an outdated version whose main benefit is up-to-date third-party export tools. This

appendix will show you how to translate concepts from Blender version 2.49 to Blender

version 2.58, the updated and much-improved version and most recent stable release

as of this writing. Forward-looking users will want to learn Blender 2.58, but should

be aware that export functionality for certain formats may lag behind. By the time this

book is published, it is likely that a broader selection of formats will be supported.

In this appendix, you’ll learn about the following topics:

Basics and views■■

Mesh modeling■■

Texturing, baking, and materials■■

Rigging and animation■■

208  ■   Appendix A: From Blender 2.49 to Blender 2.58

Basics and Views
Within the Blender community, it’s well known that Blender’s event system and graphical

user interface (GUI) have seen significant changes and improvements with the introduc-

tion of the 2.5 release series (hereafter version 2.5). For many beginners, this has been a

source of confusion about where to begin studying Blender, particularly given the fact

that some third-party exporters have not been rewritten yet to conform to the new (and

still evolving) Python API.

The truth is, however, Blender is still Blender, and users of the 2.4 series (hereafter

version 2.4) will not find it difficult to transition to version 2.5. Version 2.5 is better look-

ing and better organized, but the underlying concepts and the way Blender handles its

assets and data have not changed significantly.

Most of the tools work basically the same in version 2.5 as they did in version 2.4.

Transitioning to version 2.5 is simply a matter of knowing where to look for functionality

that has been moved in the interface or in some cases renamed. This appendix will tell you

where functionality described in Chapter 3 and Chapter 4 can be found in Blender 2.5.

This appendix is not intended to be a freestanding rehash of the entire process of mod-

eling, texturing, and animating a model as described in Chapter 3 and Chapter 4. You

should follow the steps in Chapter 3 and Chapter 4, and then turn to this appendix in

cases where functionality employed in those chapters is no longer where it is described in

those chapters. The vast majority of steps from those chapters involving tools and hotkeys

will carry over to version 2.5 without translation. This appendix will fill in the blanks.

It might help speed things up a bit if you read through this appendix quickly before

trying to apply the steps from Chapter 3 and Chapter 4 to Blender 2.5. Having a general

sense of the way that Blender has been redesigned between the two versions will save a

little time looking for things.

The Default Desktop
The Buttons area (the area that covers the lower third of the desktop by default in ver-

sion 2.4) has been entirely replaced by the Properties window, highlighted in Figure A.1.

With a few exceptions, most of the functionality that was previously found in the Buttons

area has migrated to the Properties window. The desktop also has a few more windows

visible by default in Blender 2.5, including a Timeline window below the 3D Viewport

and an Outliner in the upper-right corner, which enables an overview of scene data. The

Timeline window is essentially identical to the Timeline in version 2.4, but now it is con-

veniently visible by default when Blender is first opened.

Basics and Views  ■   209

Changing Views
As in Blender 2.4, the numeric keypad can be used to

change the view of the 3D Viewport. The keys used are

the same. The only difference is that Blender 2.5 starts

up by default in Perspective view, whereas Blender 2.4

started up in Orthographic view. To switch to Ortho-

graphic view (which is best for modeling), you need to

press 5 on the numeric keypad. As in version 2.4, all

numeric keypad views can also be obtained by using the

View menu on the header of the 3D Viewport, as shown

in Figure A.2.

Layers
Placing objects on different layers is done with the

M key, just as in Blender 2.4. The layer selection dialog

box that opens looks a bit different in version 2.5, as

you can see in Figure A.3, but its meaning is the

same and should be self-explanatory.

Figure A.1

The default desktop
in Blender 2.58

Figure A.2

Switching to
Front view with
the View menu

Figure A.3

Switching to
Front view with
the View menu

210  ■   Appendix A: From Blender 2.49 to Blender 2.58

The Tool Shelf
A new feature in Blender 2.5 is the Tool Shelf, which occupies the left side of the 3D

Viewport window. This can be toggled in and out of view by pressing the T key with the

mouse over the 3D Viewport, as shown in Figure A.4. Note the Smooth and Flat buttons

that control the way shading is calculated on the object’s surface. These will come up

again later in this appendix.

Splitting and Merging Windows
In Blender 2.4, splitting and merging windows is accomplished by clicking on the bor-

der between the windows and choosing to split or merge the windows in a dialog box.

In Blender 2.5, this process is sped up. In the upper-right and lower-left corner of every

window is a pattern of serrations or lines indicating the split/merge area. To split a win-

dow, click on this area in the corner of the window you want to split, as shown in Figure

A.5, and drag in the direction that you want to split the window. Doing so will create two

separate identical windows in the area occupied by the original window. The contents of

these windows are independent and can now be selected using the Editor Type menu in

the left corner of the header, just as in Blender 2.4.

Merging windows is done analogously to splitting windows, but in the opposite direc-

tion. To merge two windows, click on the split/merge area in the window corner just as

you did to split the window, but this time drag the mouse into the second window you

want to merge the first window into, as shown in Figure A.6. Doing so will eliminate the

second window and result in the first window occupying the entire space where the two

windows had been. Note that the windows edges must be aligned in the direction you

want to merge the windows. If you want to merge windows horizontally, the horizontal

top and bottom borders of the original windows must meet.

Figure A.4

Toggling the
Tool Shelf in and

out of view

Mesh Modeling  ■   211

Mesh Modeling
Most of the hotkeys and tools used to do the mesh modeling tasks in Chapter 3 are iden-

tical in Blender 2.5. This section points out a few superficial interface differences and

a few more significant differences in where the mesh modeling–related functionality

resides.

Figure A.5

Splitting a window in two

Figure A.6

Merging two windows together

212  ■   Appendix A: From Blender 2.49 to Blender 2.58

Switching to Edit mode is done with the menu in the 3D

Viewport header shown in Figure A.7, similar to Blender 2.4.

In both versions, you use the Tab key.

The Subdivide Smooth command is found in the Specials

menu shown in Figure A.8, which you open by pressing the

W key in Edit mode, just as in Blender 2.4.

Modifiers are now handled in the Modifiers panel of the

Properties window. The Modifiers panel is accessed with

the wrench icon button in the Properties window header,

as shown in Figure A.9. The Add Modifier button opens

the menu shown in the same figure, where you can choose

the modifier you want, just as in Blender 2.4.

There are some slight differences in the appearance

of the Mirror modifier panel, as shown in Figure A.10.

Option buttons from version 2.4 have been replaced by

check boxes. Do Clipping is renamed Clipping. Otherwise,

the changes are self-explanatory.

The Subdivision Surface (Subsurf) modifier panel appears as shown in Figure A.11.

As with the Mirror modifier, the differences between versions 2.5 and 2.4 are mainly

cosmetic and should be self-explanatory.

Figure A.7

Switching to
Edit mode

Figure A.8

Subdivide
Smooth in the
Specials menu

Figure A.9

Adding a Mirror modifier

Figure A.10

The Mirror modifier panel

Texturing, Baking, and Materials  ■   213

The Set Smooth functionality for smoothing the way the surface faces reflect light has

been moved and renamed in Blender 2.5. There is no longer a Set Smooth button; instead

there is a Smooth button located on the Tool Shelf under the Shading label, as shown in

Figure A.12. The button formerly known as Set Solid is now the Flat button.

Texturing, Baking, and Materials
As in the case of mesh modeling, most of the hotkeys and tools are identical to version

2.4. Once again, the biggest differences are in functionality that previously was found in

the Buttons area.

UV Textures and Unwrapping
In Blender 2.4, the UV texture slots are han-

dled in the Buttons area. These have been

moved to the Object Data Properties panel,

accessed (when a Mesh object is selected)

via the little triangular mesh-like icon in the

Properties window header. The panel labeled

UV Texture shown in Figure A.13 is where

the UV textures are managed.

Figure A.11

The Subsurf modifier panel

Figure A.12

Smooth and Flat Shading buttons

Figure A.13

The UV Texture
panel

214  ■   Appendix A: From Blender 2.49 to Blender 2.58

Clicking on the plus icon to the right of

this panel will add a UV texture to the object.

By default, the first UV texture will be named

UVTex, and it will appear in the field, as

shown in Figure A.14.

Adding seams to the model in preparation for UV unwrap-

ping is done exactly as in Blender 2.4. You access the Edges menu

shown in Figure A.15 by pressing Ctrl+E when in Edit mode, just

as in Blender 2.4.

In Blender 2.4, the Window Type menu in the left corner of

the window header is used to change the contents of windows. In

Blender 2.5, the location is the same, but the icons have changed

and the name of the menu is now Editor Type, as shown in Figure

A.16. Some of the menu entries are also different from those in

the version 2.4 menu.

You can see the header of the UV/Image Editor in Figure A.17.

As you can see, there are a number of superficial differences

and added data in the header. The associated UV texture, called

UVTex, is shown in the header, and the empty image drop-down

is in the form of a button labeled New, which you will click to

create a new texture image.

Exporting the UV Layout is done just as in version 2.48, by accessing the Export

UV Layout script, as shown in Figure A.18.

Figure A.14

Adding a UV texture

Figure A.15

Adding a seam with the
Edges menu

Figure A.16

Choosing UV/Image
Editor from the
Editor Type menu

Figure A.17

The UV/Image
header

Figure A.18

Exporting the UV
Layout

Texturing, Baking, and Materials  ■   215

Once you’ve exported the UV Layout, you can work with it in GIMP exactly as

described in Chapter 3.

Baking Ambient Occlusion
Setting ambient occlusion values and baking involve working

in the Properties window, which is where much of the func-

tionality of Blender 2.48’s Buttons window has migrated. Turn

on ambient occlusion by clicking the check box in the Ambient

Occlusion panel of the World Properties window, as shown in

Figure A.19.

The Bake panel is found in the Scene Properties window, as

shown in Figure A.20. Select Ambient Occlusion from the Bake

Mode menu, and click the Bake button to bake the ambient

occlusion to a texture.

Material and Texture Settings
Material and texture values are also accessible in the Properties

windows. Creating a texture for a material is done in the Texture

Properties window, as shown in Figure A.21. Here, you can set

the preview display to show the texture, or the material with the

texture applied, or both, as shown in the figure.

Figure A.19

Ambient occlusion
settings

Figure A.20

The Bake panel

Figure A.21

Texture Properties window

216  ■   Appendix A: From Blender 2.49 to Blender 2.58

Unlike in Blender 2.48, where texture mapping and influence values are set in the

Material buttons area, these values are all set in the Texture Properties window in

Blender 2.5, as shown in Figure A.22. In the Mapping panel, you can see the drop-down

menu set to UV and, in the Influence panel, the check box next to Color is selected.

Rigging and Animation
As with the other topics covered in this appendix, there are differences in the location

of functionality connected with rigging and animation. Functionality from the Buttons

window has been moved elsewhere, and the Action

editor has been incorporated into a more general

editor, the Dope Sheet. This section will give you the

details you need to know to translate the content of

Chapter 4 for Blender 2.5.

Setting Up an Armature
You add an Armature object in Blender 2.5 much the

same way as you did in 2.4. Shift+A is the hotkey that

brings up the Add menu. From the Add menu, select

Armature ➔ Single Bone, as shown in Figure A.23.

Figure A.22

Mapping and Influ-
ence panels

Figure A.23

Adding an
Armature object

Rigging and Animation  ■   217

As in Blender 2.4, the bone is ini-

tially concealed within the mesh if

it is not set to be rendered in X-Ray

display mode. Setting the display

mode to X-Ray is done on the Object

properties tab in the Properties

window, as shown in Figure A.24.

Under the Display tab, select the

check box next to X-Ray.

Unlike most buttons from

the version 2.4 Buttons area, the

X-Axis Mirror editing option has

not migrated to the Properties

window. Rather, the X-Axis Mirror

editing option is accessible in the

3D Viewport Tool Shelf when an

Armature object is selected, as you

can see in Figure A.25.

Editing of the armature proceeds identically to the way it happens in Blender 2.4. You

use Ctrl+N to recalculate bone angles, although a few more options are available for this

task, as shown in Figure A.26. For example, you can choose View Axis.

Figure A.24

Object properties
for the Armature

Figure A.25

Setting X-Axis
mirroring

218  ■   Appendix A: From Blender 2.49 to Blender 2.58

Associating the mesh with the armature uses the same hotkey, Ctrl+P, as Blender 2.4.

The menu that comes up is slightly different, as you can see in Figure A.27. Armature

Deform With Automatic Weights is the equivalent option to what you did in Chapter 4.

Working with the Dope Sheet
The Dope Sheet is a generalized animation editor that

includes and expands on functionality from the Action edi-

tor in previous versions. Like all the other editor types, you

can access the Dope Sheet using the Editor Type menu, as

shown in Figure A.28.

The Action editor is accessed from the menu in the Dope

Sheet header, as shown in Figure A.29. Although the Action

editor looks very similar to the Dope Sheet, there are some

important differences that become clearer when you work

Figure A.26

Recalculating bone
roll angles

Figure A.27

Skinning with auto-
matic weights

Figure A.28

Opening a Dope
Sheet window

Rigging and Animation  ■   219

on more-complex animations. The Action editor focuses on a single object, whereas the

Dope Sheet gives an overview of animation data for all objects.

You can create a new action by click-

ing the New button of the Action edi-

tor header, as shown in Figure A.30.

Alternately, you can simply begin

keying your armature, and an action

called ArmatureAction will be created

automatically. Keying the armature

poses is done exactly the same way as in

Blender 2.4: by pressing the I key over

the 3D Viewport and choosing LocRot

from the Insert Keyframe menu shown in

Figure A.31.

When you’ve keyed the frames, the key-

frames are represented in the Action edi-

tor as yellow or white diamonds, just as in

Blender 2.4. Also similarly to Blender 2.4,

you can display the keyed values of each

bone’s channel by clicking the little tri-

angle to the left of the bone name. Figure

A.32 shows keyframes for two bones, with

one of the bone’s complete location and

rotation values displayed.

Copying and pasting key-

frames in the Action editor is

done exactly the same way as

in Blender 2.4. The hotkeys

and selection work essentially

identically. The copy and paste

buttons for poses are also in the

same place in the 3D Viewport

header but the icons are differ-

ent, as you can see highlighted

in Figure A.33.

Figure A.29

Choosing the Action
editor

Figure A.30

The Action editor
header

Figure A.31

Keying a pose

Figure A.32

Keyframes in the
Action editor

Figure A.33

Pose copy and
paste buttons

220  ■   Appendix A: From Blender 2.49 to Blender 2.58

You now should have all the information you need to translate the processes described

in Chapter 3 and Chapter 4 to the latest version of Blender. I hope it’s clear that the differ-

ences are not all that insurmountable. You’re not really learning a completely new piece of

software, even though it might seem that way. Blender 2.5 is better organized and easier

to use. As you continue learning Blender 2.5, you will also discover that it is extraordi-

narily configurable and customizable. For the purposes of this book, though, everything

you need to know about making the switch from Blender 2.4 to version 2.5 should be here

in this appendix.

Appen d ix B

File Formats and Exporting

Throughout this book,  various programming environments are dis-

cussed. Each environment has different requirements in terms of the kind of 3D content

it is able to handle. This appendix collects the information concerning file formats from

throughout the book in one place so that you can quickly find out what file formats you

need to use for the programming environment in which you’re interested. In addition,

this appendix includes information about how to export the file format you need from

Blender.

In this appendix, you’ll learn about the following topics:

Development environments and file formats■■

Exporting from Blender■■

222  ■   Appendix B: File Formats and Exporting

Development Environments and File Formats
This section tells you which programming environment can process which file format

and discusses any restrictions or complications you may encounter when using 3D assets

in that particular environment.

Processing
Processing can import OBJ files using the OBJ Loader library found here:

http://code.google.com/p/saitoobjloader/downloads/list

Some efforts have been made to create import libraries for other formats, including

MD2, but none of these has been developed to the same extent as the OBJ Loader library.

OBJ files do not support animation. Animated 3D models can be imported into Process-

ing as an array of separate single-frame OBJ files, as described in Chapter 5, “3D Pro-

gramming in Processing.” However, this places significant demands on the memory used

by the Processing sketch. For this reason, in terms of deforming textured 3D models,

only very short animations featuring very low-poly models are possible in Processing at

present.

FLARManager
FLARManager imports Collada (DAE) files. Collada files support animation, and FLAR

Manager is able to handle animated 3D models in Collada format. However, there are

some inconsistencies in how the files are read by the various 3D engines available to

FLARManager (Away3D, Papervision), and the import functionality can be extremely

sensitive to details of how the files were exported. Currently available Blender exporters

for Collada may have mixed results. The best alternative is to export from Blender to FBX

and to use Autodesk’s proprietary, free-of-charge converter software to convert from FBX

to Collada.

FLARManager also includes import support for the MD2 format.

ARMonkeyKit
ARMonkeyKit handles OBJ files. The jMonkeyEngine (JME) 3.0 platform handles

animated Ogre Game Engine files, but this functionality is not yet available in

ARMonkeyKit.

NyARToolKit for Android
NyARToolKit for Android traditionally imported only the Metasequoia (MQO) file for-

mat, but support is currently under development for OBJ files. Metasequoia is a free-of-

charge 3D modeling and texturing application that is popular in Japan. Unfortunately, it

is available only for Windows, and learning to use it is not straightforward because there

http://code.google.com/p/saitoobjloader/downloads/list

Exporting from Blender  ■   223

is very little English-language documentation or tutorial material available. An up-to-

date Blender exporter is available.

Exporting from Blender
This section presents instructions for exporting various formats from both Blender 2.49

and Blender 2.58, where exporters are available. In addition, it notes limitations in the

currently available export functionality for both versions where such limitations exist.

OBJ
Export to OBJ files is well supported in Blender

2.49, and it has limited support in Blender 2.58.

Like many of the export scripts discussed in

this appendix, the OBJ export script is accessed

via the File ➔ Export menu, as shown in Figure

B.1 (Notice the other contents of the menu.

This menu contains all of the standard export-

ers for Blender 2.49.) Blender 2.49 support for

OBJ export enables a variety of useful options,

which you can select in the dialog box shown

in Figure B.2. This dialog box appears after

you have selected a location on your hard drive

where you want to export the OBJ file(s). The

Animation option in this dialog box causes the

exporter to export separate OBJ and MTL (mate-

rial) files for each frame in the animation range

(as determined by the Start and End values in the

Timeline). When exporting animation to OBJ

files, it is a good idea to pick a dedicated directory

in which to save the exported files.

Blender 2.58 has OBJ export functionality enabled by default, and it can also be found

in the File ➔ Export menu, as shown in Figure B.3. Note that there are fewer export

options available here than in the corresponding

Blender 2.49 list. There are two reasons for this.

The first is that fewer exporters exist at present. The

other reason is that some exporters are disabled by

default and must be enabled in the add-ons system

in User Preferences. (See the “Other Formats” sec-

tion of this appendix for information on doing this.)

Figure B.1

OBJ Export for
Blender 2.49

Figure B.2

Export options in
Blender 2.49

224  ■   Appendix B: File Formats and Exporting

Unlike in Blender 2.49, the version 2.58 exporter does not

allow you to choose any options and does not support animated

export as of this writing. This may change in the near future, but

OBJ is not an optimal format for exporting animation and there

are no commonly used game engines that use multiple OBJ files

for animation. Therefore, support for animation export to OBJ

files is probably not a developer priority.

A more interesting development would be for Processing and

NyARToolKit for Android to support importing animated meshes

in Collada or Ogre formats, but I am not aware of any efforts to

do so at this time.

Collada
Collada is an open, XML-based format for encoding 3D data,

including models, textures, lighting, and animation. Collada files

use the extension .dae. Collada exporters can be found in the

File ➔ Export menu of both Blender 2.49 and Blender 2.58. As with OBJ export, the ver-

sion 2.49 exporter allows the selection of a number of options via the dialog box shown

in Figure B.4, whereas the version 2.58 exporter exports the DAE file without any user

feedback or options dialog box.

It is difficult to say where the problems lie, but I can

say that, in my experience, the DAE files exported by

Blender often have serious problems being read both

in Papervision and Away3D, although they are not

always the same problems. I found problems with ani-

mation and depth sorting with exported models. This

is not necessarily due to poor exporting on Blender’s

side, but may be due to incompatibilities with the way

Papervision or Away3D parses the files. Whatever the

case, I was ultimately forced to use an inelegant work-

around to export Collada files that would display cor-

rectly (or almost correctly) in Away3D. To do this, I

used Blender’s FBX exporter and converted from FBX

to Collada using Autodesk’s proprietary FBX converter

software. Even using this method, I was unable to get

a Collada file that rendered correctly in Papervision,

which is why the example in Chapter 8, “Browser-Based

AR with ActionScript and FLARManager,” focuses on

the Away3D engine.

Figure B.3

OBJ Export from
Blender 2.58

Figure B.4

Collada export
dialog box for

Blender 2.49

Exporting from Blender  ■   225

Autodesk FBX
The Autodesk FBX exporter in both Blender 2.49 and 2.58 can be accessed by default

through the File ➔ Export menu. FBX export from both versions yields good results. You

can check your exported FBX files by using the Autodesk FBX Viewer, shown in Figure B.5.

The FBX Viewer is bundled with the FBX Converter, which can convert an animated FBX

file directly to an animated Collada DAE file, as shown in Figure B.6. You can download

the proprietary FBX Converter software for free from Autodesk’s website here:

http://usa.autodesk.com/adsk/servlet/pc/item?siteID=123112&id=10775855

Figure B.5

Autodesk
FBX Viewer

Figure B.6

Autodesk FBX
Converter

http://usa.autodesk.com/adsk/servlet/pc/item?siteID=123112&id=10775855

226  ■   Appendix B: File Formats and Exporting

As mentioned previously, the resulting DAE file displayed correctly for me using the

Away3D engine in FLARManager, but I still experienced unacceptable render problems

when I imported it into the Papervision 3D engine. I can’t speculate on where those prob-

lems arose.

Metasequoia
Metasequoia is a Windows-only, free-of-charge 3D modeling and texturing applica-

tion that is popular in Japan, but not so much outside of Japan. Because NyARToolKit

was originally created (and remains primarily) developed by Japanese developers,

the Metasequoia (MQO) file format was a reasonable choice for the NyARToolkit for

Android.

Blender 2.49 includes an MQO exporter in the File ➔ Export menu by default. The

dialog box is shown in Figure B.7. The export functionality is incomplete. (Click Options

to see what I mean. You’ll see a gray field with only two buttons reading Exit and Export.

Some options!) However, the main item missing is the ability to export textures with

the mesh. Meshes themselves export correctly, but a bug in the exporter prevents the

exported mesh from having a texture, although it is fully textured in Blender.

The situation is better for the Blender 2.5 series. Good

MQO export scripts exist for all stable releases of the 2.5

series. However, they are not currently distributed as part

of the official Blender distribution. Because the Python

API has changed rapidly, this exporter has required regular

updating. As of this writing, the latest version available is for Blender 2.58. You need to

download it yourself and install it as an add-on. You can download the exporter here:

http://pr0jectze10.tuzigiri.com/index.html

Click on the link labeled (download links), and then click

on the link labeled Blender (Blender scripts). Download the file called

mqo_script_258. When you’ve downloaded it, unzip the script archive.

To use add-ons, you first need to place them in your Blender add-ons directory. The

location of this directory depends on your system and other factors. If you don’t know the

location of your add-ons directory, the quick-

est way to find it is to run the System Info

script from the Help menu, as shown in Figure

B.8. After you do this, you will be able to open

a text file with a complete listing of system info

in a text editor window, as shown in Figure B.9.

The addons directory is shown highlighted in

Figure B.10. This is where you need to put the

mqo_script_258 directory. When you’ve placed

the directory here, restart Blender.

Figure B.7

Metasequoia export
dialog box for

Blender 2.49

Figure B.8

Generating
system info

http://pr0jectze10.tuzigiri.com/index.html

Exporting from Blender  ■   227

Click Ctrl+Alt+U to open the User Preferences

window, and click the Add-Ons button to see the

Add-Ons preferences. Find the Import-Export

Metasequoia Format (.mqo) panel shown in Figure

B.11, and click the check box to activate the add-on.

You do not need to restart Blender after

doing this. Close the User Preferences.

If you look in the File ➔ Export menu

now, you will see a new entry, as shown in

Figure B.12, with a little plug icon to the left

to show that it is an optional add-on.

With the mesh you want to export

selected, simply call this exporter from the

menu and choose where to save the MQO

file. The export should go smoothly. Figure

B.13 shows an exported mesh from Blender

opened in Metasequoia.

Figure B.9

Accessing system
info in the text
editor

Figure B.10

The addons direc-
tory in system info

Figure B.11

Turning on the
Metasequoia
exporter

Figure B.12

The Metasequoia
exporter in the
Export menu

228  ■   Appendix B: File Formats and Exporting

MD2
As of this writing, export to the MD2 file format is supported in Blender 2.49 but

not in Blender 2.58. The exporter for MD2 can be found in the File ➔ Export menu in

Blender 2.49. When you run the exporter, you’ll see the dialog box shown in Figure B.14.

To control the length in frames and the number

and names of exported actions, you can enter a

Frame List file, which is an external file that tells

the exporter the names of the actions you want to

export, along with their start and end frames.

Ogre XML
Ogre XML is the format for animated objects used by JME 3.0. For this reason, the

jMonkeyEngine community has been at the forefront of pushing for up-to-date Blender

exporters. A stable exporter exists for Blender 2.49 and can be downloaded here:

www.ogre3d.org/tikiwiki/Blender+Exporter

The Ogre exporter for Blender 2.49 is very stable and fully featured. As you can see

from the interface shown in Figure B.15, it includes a GUI tool for choosing actions to

export by name, along with the file.

Figure B.13

The exported mesh
in Metasequoia

Figure B.14

MD2 export dialog
box in Blender 2.49

http://www.ogre3d.org/tikiwiki/Blender+Exporter

Exporting from Blender  ■   229

The 2.5-series exporter is under development as of this writing. The latest version

is written for Blender 2.57, but by the time you read this, an exporter for version 2.58

should be available. Be sure to read the installation instructions in the package’s README

.txt for important dependencies and where to download them:

http://code.google.com/p/blender2ogre/downloads/list

Other Formats
A fairly complete list of supported formats for Blender 2.58 can be found by looking at

the Import-Export Add-ons list, as shown in Figure B.16. Access this list by pressing

Ctrl+Alt+U, which brings up the User Preferences window, and then clicking Add-Ons.

Figure B.15

Ogre XML export
from Blender 2.49

Figure B.16

Import-Export
Add-ons

http://code.google.com/p/blender2ogre/downloads/list

230  ■   Appendix B: File Formats and Exporting

To add the functionality of an add-on, simply select the check box on the right side of

the add-on panel. Note that some add-ons are under development and their functionality

may be incomplete.

Index

A
accelerometer data, 2
Action editor

Blender 2.49 and Blender 2.58, 218–219, 219
walk cycle, 79–83, 80–82

ActionScript. See FLARManager framework
active objects, 72
Adafruit ARDX, 124
Add Mirror menus, 40
Add Modifier button, 212
Add New option

actions, 80
material, 67

add-ons, 226–227, 229, 229
Add Site dialog box, 192, 193
Add to Library option, 143
addChild function, 145, 160
addMarkers method, 183
addons directory, 226, 227
Adidas company, 4
ADT (Android Development Tools) plugin,

192, 192
alien

animated, 69
rigging, 75–79, 75–79
texture, 70–74, 70–74
walk cycle, 79–85, 80–85

modeling, 35–54, 35–54
alligator clips, 9, 124–125
alpha value for background, 16
Alterna3D Lite framework, 136
ambient occlusion (AO) texture

baking, 54–59, 55–59
belt area, 50
Blender 2.49 and Blender 2.58, 215, 215
GIMP, 63, 63

Ambient setting
materials, 179, 180
scene graphs, 176–177

analogRead function, 129

Android, 189
3D assets, 202–203
Eclipse for, 192–195, 192–195
handset emulator, 9
hardware, 190–191, 191
learning resources, 203
NyARToolkit for, 196–202, 197–202
setting up, 201–202, 202
software, 191–192
virtual devices, 195–196, 195–196

Android Development Tools (ADT) plugin, 192, 192
Android Virtual Device (AVD), 195–196, 195
angles

arcs, 20, 20, 22–23, 25
arms, 43
bones, 78–79, 79, 217, 218
camera, 150
marker, 117–118

animation
Blender 2.49 and Blender 2.58, 216–219,

216–219
Dope Sheet, 218–219, 219
low-poly character, 69

rigging, 75–79, 75–79
texture, 70–74, 70–74
walk cycle, 79–85, 80–85

with OBJ arrays, 98–102, 99
Animation option, 223
antialiasing, 177
AO (ambient occlusion) texture

baking, 54–59, 55–59
belt area, 50
Blender 2.49 and Blender 2.58, 215, 215
GIMP, 63, 63

arc function, 19–20, 22–23
arcs, 20, 20, 22–23
Arduino Duemilanove I/O board, 122, 123
Arduino platform, 4–5, 122

hardware, 123–124, 123–124
libraries, 14

Index
Note to the Reader: Throughout this index boldfaced page numbers indicate primary discussions of a
topic. Italicized page numbers indicate illustrations.

234  ■   Arduino Uno I/O board – Blender

microcontrollers, 9, 122–123, 123
Processing communication with, 127–134,

128–129, 133–134
toy AR scale, 124–125, 125

Arduino Uno I/O board, 122–123
ARMaggie application, 174–175, 174
ARMaggie class, 181–182
ARMaggie.java application, 180, 180
Armature Deform With Automatic Weights

option, 218, 218
Armature object, 75
ArmatureAction action, 219
armatures, 75

Blender 2.49 and Blender 2.58, 216–218,
216–218

setup, 75–79, 76–79
ARMonkeyKit, 166–167

code, 180–183, 180–181
developer interview, 184–188
functionality, 184
installing, 169–174, 169–173
for OBJ files, 222
OBJ model-loading example, 174–175, 175
overview, 174
resources for, 167–169
scene graph and nodes, 175–180, 176–180

ARMonkeyKitApp class, 181–182
arms

extruding, 42–44, 43, 76, 76
rotating, 82, 82

arrays
description, 30
OBJ, 98–102, 99
sample code, 108–109

ARToolKit
creation, 3
overview, 6

ARToolKit Marker Generator Online Multi link,
10, 11

ARVideoPlayer application, 184
augmented reality (AR) overview, 1–2

history, 3
necessities, 7–12, 9–12
in practice, 3–5, 5
prototyping, 5–6
tools and technologies, 6–7

Autodesk FBX Converter, 149–150, 151, 224

Autodesk FBX exporter, 225–226, 225
Autodesk FBX Viewer, 150, 151, 225, 225
AVD (Android Virtual Device), 195–196, 195
AVD Manager, 194–196, 194, 196
Away3D engine, 149, 159, 224, 226
Away3D framework, 136, 146
Away3D Lite framework, 136
axes for lights, 90

B
back-face wireframes, 177
background

color, 16, 19
rainbow, 21

background function
arguments, 16
Interactive mode, 19

Background node, 178, 178
baking

Blender 2.49 and Blender 2.58, 215, 215
textures, 54–59, 55–59, 73, 73

BaseSimpleGame class, 182
Beginning Android Games (Zechner), 203
beginTransform method, 111
belts

color, 64, 64–65
extruding, 50–52, 51–53
mapping, 74

bending
elbows, 46, 47
knees, 46, 46

Blend node, 179
Blender, 33

alien modeling, 35–54, 35–54
Blender 2.49 and Blender 2.58 comparison

baking, 215, 215
basics and views, 208–210, 209–211
material and texture settings, 215–216,

215–216
mesh modeling, 211–213, 212–213
rigging and animation, 216–219, 216–219
UV textures and unwrapping, 213–214,

213–214
finished texture, 66–68, 66–68
overview, 34
smooth AO textures, 54–59, 55–59
versions, 34–35

bones – Create From Bone Heat option  ■   235

bones, 75
angles, 78–79, 79
Blender 2.49 and Blender 2.58, 216–217, 218
hips, 77, 77
shoulder area, 76, 76
walk cycle, 80–83, 82

Botha, Charl, 104–105
Bouncers sketch, 25–32, 26, 28
Box Select tool, 37
boxes, 88
breadboards, 5

description, 123–124, 123
requirements, 9
sensors and circuits, 125–126, 126

brightness in HSB color, 21
browser-based applications. See FLARManager

framework
BSD-2 licenses, 166
Bucket Fill tool, 63–64, 63–64
BuildAR application, 6–7
bus strips on breadboards, 123, 127
Buttons desktop area, 208, 209

C
cables for USB, 124
calibration weights, 124, 125
cameras

activating, 108
Flash applications, 140
head-up display format, 175
images, 111
as necessity, 7
NyAR4psg library, 106
patterns, 109
reading data from, 110
smartphones, 190

cardboard, 12
Caudell, Tom, 3
center point coordinates, 20
central processing units (CPUs), 122
Checkout dialog box, 169–170, 170
child nodes, 176
circles, 17–19
circuits, 125–127, 126
Clarkson, Adam

ARMonkeyKit, 166
interview, 184–188

classes
extending, 182–183
working with, 25–32, 26, 28

Clear Location option, 75
Clear Roll (Z-Axis Up) option, 78
clipping

Blender 2.49 and Blender 2.58, 212
with Mirroring, 40

“closer” objects, 110
code examples, 107–112
Collada (DAE) files, 34, 145–146

creating, 149–153, 150–152
description, 149
exporting, 224, 224
importing, 222

color
background, 16, 19
fill, 109
GIMP, 63–64, 63–65
HSB, 21
lighting, 90, 176
materials, 179–180, 180

Color Picker dialog box, 63, 63
colormode function, 21, 108
comments

code, 107
FLARManager, 145

computer vision systems, 2, 4
conditional control structures, 19
configOptions method, 182
constraining scaling, 38, 38, 41
constructor methods, 29
control structures, 19
converting

degrees to radians, 20
FBX files to Collada files, 150, 151–152

coordinates
Bouncers, 29
lighting, 90
Processing, 18, 18

Copy Projects Into Workspace option, 197
copying objects, 48, 48
copyleft licenses, 166
cos function, 22–23
CPUs (central processing units), 122
Create Directory For Project option, 141
Create From Bone Heat option, 78

236  ■   Create New Android Virtual Device window – Error to Ignore option

Create New Android Virtual Device
window, 196, 196

Create Vertex Groups menu, 78
createFont function, 108
createMarkerObject method, 183
custom markers, 157–158, 158

D
DAE (Collada) files, 34, 145–146

creating, 149–153, 150–152
description, 149
exporting, 224, 224
importing, 222

Dancing in Cyberspace, 3
DART (Designer’s Augmented Reality

Toolkit), 7
dashboard displays, 4
declaration of variables, 18
default desktop, 208, 209
defining classes, 25
degrees, 20
deprecated API functions, 172
Designer’s Augmented Reality Toolkit

(DART), 7
desktop in Blender 2.49 and Blender 2.58,

208, 209
detect method, 111
Diffuse setting, 179
directionalLight function, 90
DirectionalLight node, 176
Director environment, 7
display function, 27, 29–30
Do Clipping option

Blender 2.49 and Blender 2.58, 212
with Mirroring, 40

Dope Sheet, 218–219, 219
double slashes (//) in FLARManager, 145
downloading OBJLoader library, 92
draw function

3D programming, 88–90
animation, 100, 102
description, 17
example program, 24–25
HSB color, 21
Interactive mode, 17–19
with OBJLoader, 93, 96
sample code, 107, 110

serial monitor, 130–132
Spot, 27–28, 30–31
transformations, 114–115, 117
trigonometry, 22

draw modes for OBJ files, 96–97
drawing, 19

3D programming commands, 89–90,
89–90

HSB color mode, 21
primitive shapes, 19–20, 20
trigonometry, 22–23

drawMarkerPos function
corners, 109–110
transformations, 114

drivers, Android, 202
drum sounds, 146, 147
Duemilanove I/O board, 122, 123

E
Eclipse IDE, 137

for Android, 192–195, 192–195
description, 168
importing projects into, 170–174, 171–173,

197–198, 197–198
Eclipse workbench, 171
edges

Blender 2.49 and Blender 2.58, 214
in mesh subdividing, 37

Edit mode
Blender 2.49 and Blender 2.58, 212
selecting, 36, 36

Editing Options settings, 75
Editor Type menu, 210
elbows

bending, 46, 47
extruding, 76
moving, 78, 78

electricity for breadboards, 123, 125, 127
electronic pressure sensors, 9
ellipse function, 19

arcs, 23
arguments, 20
circles, 16–18

ellipseMode function, 20
enableDebug method, 95–96
endTransform method, 112
Error to Ignore option, 172

Errors/Warnings page – games  ■   237

Errors/Warnings page, 172, 173
example directory, 106
examples directory, 92
Existing Projects Into Workspace option, 171, 197
exporting

3D content, 148–149
animationMTL files, 85–86, 85
Autodesk FBX exporter, 225–226, 225
Collada files, 224, 224
MD2 files, 228, 228
Metasequoia files, 226–228, 226–228
OBJ files, 223–224, 223–224
Ogre XML files, 228–229, 229
Targa files, 60

extending classes, 182–183
extruding

arms, 42–44, 43, 76, 76
belts, 50–52, 51–53
bones, 77, 77
head, 44, 45, 77, 77
legs, 37–38, 38, 42, 42, 77, 77
neck, 44, 45, 77, 77
regions, 37–38, 38
shoulder area, 76, 76

eyes, 179

F
FBX Converter, 149–150, 151, 224
FBX exporter, 225–226, 225
FBX format, 34
FBX Viewer, 150, 151, 225, 225
file formats overview, 222–223
fill function

arcs, 23
color, 16
primitives, 90
sample code, 109–110

finished texture, 59–68, 60–68
Fitzgerald, Scott, 128
flarConfig.xml file, 158
FLARManager framework

3D content, 148–149
Collada files

creating, 149–153, 150–152
importing, 222

custom markers, 157–158, 158
examples, 144–146, 145–147

Flash Builder, 138–140, 138–140
FlashDevelop, 141–144, 141–143
installing and preparing, 137–138
interactivity, 153–157, 153, 157
obtaining, 136
overview, 136
project creation, 147–148
troubleshooting, 159

FLARManagerExample_Flash3D
example, 145, 145

FLARManagerExampleLauncher class,
144–145

FLARManagerTutorial_Collada_Away3D_annie.
as file, 148

FLARManagerTutorial_Collada_Away3D
class, 145, 148

FLARManagerTutorial_Collada_Away3D_annie
class, 159–163

FLARManagerTutorial_Collada_Away3D
example, 146

FLARManagerTutorial_Collada_PV3D
example, 146, 146

FLARMarker class, 154
FLARToolKit, 136
FLARToolKit userz group, 159
Flash Builder

overview, 137
project setup, 138–140, 138–140

FlashDevelop
overview, 137
project setup, 141–144, 141–143

fonts, 108–109
Forbidden Reference option, 172
force-sensitive resistors, 124, 124, 127, 129
Foreground Color option, 63, 63
Frame List files, 228
front-face wireframes, 177
Front view

accessing, 35–36, 36, 42
Blender 2.49 and Blender 2.58, 209, 209

“further” objects, 110

G
Gainer platform, 4, 122
games

FLARManager, 146, 147
jMonkeyEngine. See jMonkeyEngine (jME)

238  ■   GIMP application – int declarations

GIMP application, 59–68, 60–68
Ginsburg, Dan, 203
Global Ambient setting, 176
global positioning system (GPS), 2
GNU General Public License (GPL), 6
Google Summer of Code, 149
GPL (GNU General Public License), 6
GPS (global positioning system), 2
graphics-driver issues, 106
grayscale setting, 16, 109
grid textures, 57, 57
grounds on breadboards, 127
GSCapture class, 108
GSVideo library, 105–107

H
Haemel, Nicholas, 203
Hallmark company, 4
hardware

Android, 190–191, 191
Arduino, 123–124, 123–124
peripheral, 8–9

Huawei IDEOS Android phone, 191
head

extruding, 44, 45, 77, 77
scaling, 44, 45

head-mounted displays, 4
head-up display (HUD) format, 175
height

images, 57
rectangles, 20

hint function, 110–111
hips, 77, 77
Hiro-affected node, 178, 178
Hiro markers, 9, 9, 106, 175, 183
HITLab (Human Interface Technology

Laboratory), 6
Hotels.com, 4, 5
hotkeys

Blender 2.49 and Blender 2.58
keyframes, 219

mesh modeling, 211
HSB color mode

background, 16
working with, 21

HTML templates, 139–140, 140
HUD (head-up display) format, 175

hue in HSB color, 21
Human Interface Technology Laboratory

(HITLab), 6

I
I/O boards, 122–124, 123
IDE (integrated development environment), 8

Eclipse, 168
Flash Builder, 137
Processing, 14–15, 15

IDEOS phone drivers, 202
Igoe, Tom, 128
Iizuka, Ryo, 104
images

cameras, 111
creating, 57, 57, 72, 72
markers, 106

import command in OpenGL, 107
Import dialog box, 197–198, 197–198
Import-Export Add-ons list, 229, 229
Import-Export Metasequoia Format (.mqo)

panel, 227
Import Flash Builder Project option, 139
Import Library option, 92
Import Projects screen, 172, 172, 197
Import wizard, 171
importing

3D content in FLARManager, 148–149
into Eclipse, 170–174, 171–173, 197–198,

197–198
file formats in, 222–223
Flash Builder projects, 139, 139
OBJLoader library, 92
OpenGL library, 91, 91

inflating extruded regions, 51–52, 52–53
Influence panel, 216, 216
inputs in microcontrollers, 122–123
Insert Key menu, 82
Install dialog box, 192, 193
Install New Software option, 192
installing

ADT, 192, 193
ARMonkeyKit, 169–174, 169–173
FLARManager, 137–138
NyAR4psg library, 105–107, 105–106
Processing, 14–15, 15

int declarations, 18

integer values – line numbers  ■   239

integer values, 18
integrated development environment (IDE), 8

Eclipse, 168
Flash Builder, 137
Processing, 14–15, 15

Interactive mode in Processing, 17–19, 17–18
interactivity in FLARManager, 153–157, 153, 157
interfaces, rigging, 75
ITRON operating system, 122

J
Japan Android users group, 197
Java Development Kit (JDK), 167–168, 191
Java Media Framework (JMF), 168
Java programming language, 8
JDK (Java Development Kit), 167–168, 191
JMF (Java Media Framework), 168
jMonkeyEngine (jME), 165

ARMonkeyKit. See ARMonkeyKit
Eclipse IDE, 168
Java Development Kit, 167–168
Java Media Framework, 168
Ogre Game Engine files, 222
operating systems, 167
overview, 166
QuickTime 7, 169
Subversion client, 168–169
versions and distinctions, 166–167, 166
WinVDIG video digitizer, 169

jMonkeyPlatform, 166, 166
joints

armature bones, 75
elbow, 78

jump wires
breadboards, 123–124
requirements, 9

junaio application, 190

K
Kanji markers, 106
Kato, Hirokazu, 3
keying and keyframes

Blender 2.49 and Blender 2.58, 219, 219
walk cycle, 79–85, 80–85

keyPressed function, 96–97

Kinect technology, 187
Klüver, Billy, 3
knees

bending, 46, 46
moving, 78, 78

L
Lasso tool, 64, 64
Layar application, 2, 187–188, 190
Layer Fill Type setting, 62
layers

Blender 2.49 and Blender 2.58, 209, 209
GIMP, 61–65, 61–65
mesh, 48, 48
visibility, 65, 65

Layers dialog window, 61, 61
lazy Susan turntables, 12, 12, 112
LEDs (light-emitting diodes), 124–125
Lego company, 4
legs

extruding, 37–38, 38, 42, 42, 77, 77
rotating, 81, 81

lib directory, 143, 143
libraries

Arduino, 14
FlashDevelop, 143, 143
GSVideo, 105–107
jME, 167
jMonkeyPlatform, 166
NyAR4psg, 104–107, 105–106
OBJLoader, 92–96, 94–95
OpenGL, 91, 91
PTAMM, 186–187

libraries directory, 92
library directory, 92
light-emitting diodes (LEDs), 124–125
Light node, 176, 176
lighting

3D programming commands 89–90,
89–90

ambient occlusion, 54–59, 55–59
ARMonkeyKit, 175–176, 176

lights command, 89–90
line function

arcs, 23
arguments, 19

line numbers, 180–181, 181

240  ■   line thickness – MQO (Metasequoia) files

line thickness, 16, 177
LINES draw mode, 97
Lipchak, Benjamin, 203
list function, 131
location-tracking data, 2
LocRot option, 82–83
Loop Cut tool, 50
loop function, 128
loops, 50–51, 50–51
low-poly animated alien, 69

rigging, 75–79, 75–79
texture, 70–74, 70–74
walk cycle, 79–85, 80–85

low-resolution surface texture, 47
lower legs, extruding, 42, 42

M
Mac OS X with jMonkeyEngine, 167
MagicMarker application, 146, 147
Main.mxml file, 142, 143
Make Parent To menu, 78
Mapping panel, 216, 216
Mark Seam option, 55, 55, 71, 71
Marker Generator, 10, 11
Marker Maker site, 10, 10
MarkerBall application, 146, 147
markerless systems

tools, 7
trends, 2

markers
custom, 157–158, 158
detecting, 109
images, 106
overview, 9–10, 9–10
with pattern IDs, 153–155, 153
rotating, 155–157, 157
for transformations, 112–119, 112, 116

Martin, Julie, 3
Material node, 179, 179
materials

adding, 67–68, 67–68
color, 179–180, 180
formats, 85
low-poly animated alien, 74, 74
OBJ material libraries, 92
settings, 215–216, 215–216

MD2 format, 34
exporting to, 228, 228
importing from, 203
support, 222

medicine applications, 187–188
Mellis, David A., 128
menu bar, 15
Merge Visible Layers option, 65
merging windows, 210, 211
Mesh node, 179, 179
meshes

Blender 2.49 and Blender 2.58,
211–213, 212–213

subdividing, 37, 37, 48–49, 49
Metasequoia (MQO) files, 34, 202

exporting, 226–228, 226–228
importing, 222–223

methods, 29
microcontrollers, 9, 122–123, 123
microphones, 140
Mirror modifier

applying, 54, 54
Blender 2.49 and Blender 2.58, 212, 212
low-poly animated alien, 71, 71
symmetrical objects, 39–40, 40–41

mirroring for extruding shoulders, 76, 76
mobile apps, 4
mobile cameras, 109
modeling, 33

with Blender. See Blender
meshes, 211–213, 212–213

modifiers in Blender 2.49 and Blender 2.58,
212, 212

Modifiers panel, 49, 49
mouse screen position, 19
mouseDragged function, 93, 96
mousePressed function

animation, 100, 102
Spot, 28, 31

mouseReleased function
animation, 100, 102
Spot, 28, 31

mouseX variable, 19
mouseY variable, 19
moving knees, 78, 78
MQO (Metasequoia) files, 34, 202

exporting, 226–228, 226–228
importing, 222–223

MTL files – outputs in microcontrollers  ■   241

MTL files, 85, 92
information in, 98
transformations, 117

multimarker applications
NyAR4psg library, 104–105
for transformations, 112–119, 112, 116

multimarker.png file, 105
Multiply mode, 63, 63
Munshi, Aaftab, 203

N
names

actions, 80
tabs, 25, 26

Native Library Location option, 173, 173
neck

extruding, 44, 45, 77, 77
scaling, 44, 45

NeHe tutorials, 203
New Layer dialog box, 61–62, 62
New Project window, 141, 142
New Tab option, 25
nodes in ARMonkeyKit, 175–180, 176–180
noFill function, 23
nonvision-based AR, 2
Normal layer mode, 61, 61
Normalized option, 58
noStroke function, 97

arcs, 23
circles, 19
lighting, 89

Noun Project, 125
Num Lock key in Blender, 35
NyAR4psg library, 104–105

installing and testing, 105–107, 105–106
version, 109

NyARMultiBoard class, 107–109
NyARMultiTest directory, 106
NyARToolkit, 104, 196–197

3D assets, 202–203
device setup, 201–202, 202
importing MQO files, 222–223
importing projects, 197–201, 197–201
learning resources, 203–204

NyARToolkit library, 6

O
OBJ Export dialog box, 85, 85
OBJ files, 34, 92

arrays, 98–102, 99
draw modes, 96–97
exporting to, 85, 85, 223–224, 223–224
importing, 222
model-loading example, 174–175, 175
OBJLoader library, 92–96, 94–95, 222
transformations, 117
working with, 97–98

object-oriented programming, 25, 203
objects

ARMonkeyKit, 178
description, 25

OBJLoader_023 file, 92
OBJLoader.jar file, 92
OBJLoader library, 92–96, 94–95, 222
OBJModel class, 95
Ogre Game Engine files, 222
Ogre XML format, 34, 228–229, 229
onAdded function, 161
onboard AR applications, 4
onEnterFrame function, 156, 163
onFlarManagerInited function, 161–162
onMarkerAdded function, 154–155, 162
onMarkerRemoved function, 156, 163
onMarkerUpdated function, 155, 162–163
opacity value for background, 16
Open As Layers option, 61
open microcontroller projects, 122
Open Source Initiative (OSI), 8
OpenGL

3D programming, 91, 91
learning resources, 203

OpenGL ES 2.0 Programming Guide (Munshi,
Ginsburg, and Shreiner), 203

operating systems
Arduino. See Arduino platform
jMonkeyEngine, 167

origin in 3D programming, 88–89
Orthographic view, 36
OSI (Open Source Initiative), 8
outputs in microcontrollers, 122–123

242  ■   P3D (Processing 3D environment) – projects

P
P3D (Processing 3D environment), 88

lighting and drawing commands,
89–90, 89–90

overview, 88–89
Package Explorer window

ARMonkeyKit, 174
Eclipse workbench, 172
FlashBuilder, 139–140, 139

Papervision3D
Collada files, 149, 224
with FLARManager, 136, 146, 222, 226
forum, 159

Parallel Tracking and Mapping (PTAM), 7
PAT files, 112
PatternMarker class, 183
patterns

cameras, 109
configuration data, 158, 158
Hiro markers, 175
markers with, 9–10, 153–155, 153
rotating, 12
for transformations, 112, 116

pattHiro.pdf file, 105
pattKanji.pdf file, 105
PDE files, 93
peripheral hardware, 8–9
Perspective view, 36
PFont class, 108
physical world, 121

Arduino communication with
Processing, 127–134, 128–129, 133–134

Arduino overview, 122, 123–125
hardware, 123–124, 123–124
microcontrollers, 122–123, 123
Processing communication with, 127–134,

128–129, 133–134
sensors and circuits, 125–127, 126
toy AR scale, 124–125, 125

pixels, 18
play function, 106, 108
point function, 19
point lights, 176
point-of-sale campaigns, 4
PointLight node, 176, 176
POINTS draw mode, 97
popMatrix function, 96
Popsicle sticks, 12

ports
microcontrollers, 122
NyARToolkit, 104

Pose mode, 79, 79, 81
poses

reversing, 83, 83
rigging, 75
walk cycle, 79–81, 79

positioning
mouse, 19
objects in 3D programming, 88–89

power for breadboards, 123, 125, 127
Preferences dialog box, 195, 195
pressure sensors, 9, 124
primitives

3D programming, 88–90, 88–90
drawing, 19–20, 20

print function, 109
println function, 129, 131–132
Processing 3D environment (P3D), 88

lighting and drawing commands,
89–90, 89–90

overview, 88–89
Processing programming environment, 8, 13

3D programming, 87
lighting and drawing commands,

89–90, 89–90
OBJ files. See OBJ files
OpenGL library, 91, 91
primitives, 88–90, 88–90

Arduino communication with, 127–134,
128–129, 133–134

classes, 25–32, 26, 28
drawing in, 19–25, 20, 25
example program, 15–17, 15–16
importing OBJ files, 222
installing and running, 14–15, 15
Interactive mode, 17–19, 17–18
overview, 14
sample code, 107–112

projector-based AR displays, 4
projects

creating in FLARManager, 147–148
importing into Eclipse, 170–174, 171–173,

197–198, 197–198
setup

Flash Builder, 138–140, 138–140
FlashDevelop, 141–144, 141–143

prototyping – Sellers  ■   243

prototyping, 5–6
prototyping boards, 5

description, 123–124, 123
requirements, 9
sensors and circuits, 125–126, 126

PTAM (Parallel Tracking and Mapping), 7
PTAMM library, 186–187
purity of color, 21
pushMatrix function, 96
PVectors class, 116–117
Python API, 208, 226
Python scripts, 34
Python Support room, 159

Q
QTJava.zip library, 172–174, 173
quad function, 19
QuickTime 7, 169

R
radians function, 20
rainbow background, 21
read method, 110
Recreate HTML Templates option,

139–140, 140
rect function, 19–20
rectangles, 19–20
rectMode function, 20
reference directory, 92
regions

extruding, 37–38, 38
inflating, 51–52, 52–53

replacing texture, 66, 66
repositories

Android, 194
SVN, 168–169

resistors, 9, 124, 124, 127, 129
reversing pose, 83, 83
RGB color mode

background, 16
colormode function, 108

RGBA values, 176–179
rigging, 69, 75

Armature object setup, 216–218, 216–218
Blender 2.49 and Blender 2.58, 216–219,

216–219
low-poly animated alien, 75–79, 75–79

RoboCop, 3
Root node, 176, 176
rotate2D function, 115, 117–119
rotateX function, 96, 117
rotateY function, 96, 118
rotating

arms, 82, 82
legs, 81, 81
markers, 117–118, 155–157, 157
patterns, 12
vertices, 44

Run As dialog box, 200, 200
running Processing programming

environment, 14–15

S
sa.mtl file, 92–93, 98
sa.obj file, 92–93, 98
SA_small_collor.jpg file, 160
sample code, 107–112
Sandy 3D Lite framework, 136
saturation of color, 21
saving UV face layout, 60, 60
scales and scaling

Arduino, 124–125, 125
faces, 38, 38, 44
head, 44, 45
neck, 44, 45
serial monitor, 133, 133
y-axis, 40, 40

scene graph in ARMonkeyKit, 175–180,
176–180

Scene Monitor, 175–176, 175, 182
Scene Properties window, 215, 215
screen position of mouse, 19
scripts

ActionScript. See FLARManager framework
MQO export, 226

SDK in Android, 190–195, 191–195
seams

Blender 2.49 and Blender 2.58, 214, 214
low-poly animated alien, 71, 71
marking, 55, 55

see-through systems, 185
Select Display Settings dialog box, 174, 175
Select Root Directory setting, 172
Selected To Active option, 73
Sellers, Graham, 203

244  ■   sensors – Terminator movie

sensors, 9, 125–127, 126
SequencAR application, 146
serial monitors, 128–132, 128–129, 133
serialEvent function, 131–132
Set Encoding dialog box, 199, 200
Set Smooth option

Blender 2.49 and Blender 2.58, 213
surface lighting, 49, 49

setup function
3D programming, 88–90
animation, 99–101
color mode, 21
description, 17
example program, 24
Interactive mode, 18
with OBJLoader, 93–96
sample code, 108
serial monitor, 130–132
Spot, 27
transformations, 113–114

Shadeless material, 68
Shootin’ Annie model, 70, 70

creating
rigging, 75–79, 75–79
texture, 70–74, 70–74
walk cycle, 79–85, 80–85

exporting, 150
marker, 117

shootinanniecolor.jpg file, 93, 95, 98
shoulders

extruding, 76, 76
forming, 43–44, 44

Show Line Numbers option, 180
Show Sketch Folder option, 93
Shreiner, Dave, 203
Side view, 35–36, 41
simpleInitARSystem function, 182
sin function, 22–23
size function

3D programming, 88–89
OpenGL, 91, 107
sample code, 108
windows, 15–16

skeletons, 75
sketches, 15
skinning, 218
slashes (/) in FLARManager, 145
smartphones, 3. See also Android

smooth AO textures, baking, 54–59, 55–59
smoothing

Blender 2.49 and Blender 2.58, 213, 213
subdivision surfacing, 47–48

software
Android, 191–192
prototyping tools, 5, 8

Sokolofsky, Eric, 160
SourceForge site, 104
spatials, 178
Specials menu, 37
sphere function, 88–90
spheres, 88–90, 88–90
Split Area option, 56, 80
splitting windows, 210, 211
Spot class, 26–32
src directory, 92
Star Trek film, 187
start method, 181
Start Page option, 138
stroke function

arcs, 23
outline color, 16
primitives, 19
sample code, 108–109

strokeWeight function, 16
styrofoam, 12
Subclipse SVN client, 169
Subdivide Smooth option, 48

Blender 2.49 and Blender 2.58, 212, 212
meshes, 37, 37

subdividing meshes, 37, 37, 48–49, 49
Subdivision Surface (Subsurf) modifier,

49, 49, 52, 212, 213
subdivision surfacing, 47–48
Subversion (SVN) client, 168–170
SuperBible: Comprehensive Tutorial and Reference

(Wright, Haemel, Sellers, and Lipchak), 203
SVN Checkout option, 169
symmetrical objects in Mirror modifier, 39–40

T
tablets, 3
tabs, 25, 26
Targa files, 60
templates, HTML, 139–140, 140
Terminator movie, 3

Test Function setting – vectors for transformations  ■   245

Test Function setting, 177
testing NyAR4psg library, 105–107, 105–106
Text Editors window, 152
text files. See OBJ files
text function

labels, 110
serial monitor, 132

textFont function, 109
Texture 2D node, 178, 178
Texture Properties window, 215–216, 215
texture.tif file, 68
textures, 33

baking, 54–59, 55–59, 73, 73
Blender 2.49 and Blender 2.58

settings, 215–216, 215–216
UV, 213–214, 213–214

GIMP, 59–68, 60–68
low-poly animated alien, 70–74, 70–74

thickness of lines, 16, 177
3D assets for NyARToolkit, 202–203
3D content in FLARManager, 148–149
3D programming, 87

lighting and drawing commands, 89–90, 89–90
OBJ files. See OBJ files
OpenGL library, 91, 91
primitives, 88–90, 88–90

Timeline window
Blender 2.49 and Blender 2.58, 208
walk cycle, 80–81, 81, 84, 84

Tool Shelf, 210, 210
Top view in Blender, 35–36
TortoiseSVN, 169, 169
toy AR scale, 124–125, 125
trace command, 154
training patterns, 10
transformations, 112–119, 112, 116
translate function

3D programming, 88–89, 89
transformations, 118

translateToCenter method, 95
transparency, eyes, 179
Transparent view, 40
trends, 4, 187–188
triangle function, 19
TRIANGLES draw mode, 97
trigonometric functions, 22–23
TRON operating system, 122

troubleshooting FLARManager framework, 159
turn value for transformations, 118
turntables, 12, 12, 112
tutorial page, 128
2D coordinate systems, 18, 18
Two Sided Lighting setting, 176

U
Uno I/O board, 122–123
unwrapping, UV

Blender 2.49 and Blender 2.58, 213–214,
213–214

process, 55–56, 56
USB cables, 124
User Preferences window

add-ons, 227
Import-Export Add-ons list, 229, 229
OBJ files, 223

UTF-8 code, 199–200, 200
UV face layout, 60, 60
UV/Image editor

Blender 2.49 and Blender 2.58, 214
low-poly animated alien, 72, 72
UV unwrapping, 56–57

UV Layout, exporting, 2.58, 214
UV Test Grid option

low-poly animated alien, 72
purpose, 57

UV texture
Blender 2.49 and Blender 2.58, 213–214,

213–214
low-poly animated alien, 72, 72

UV Texture label, 55, 55
UVs

GIMP, 59–68, 60–68
unwrapping

Blender 2.49 and Blender 2.58, 213–214,
213–214

process, 55–56, 56
UVTex texture, 214

V
variables

declarations, 18
Spot, 29

vectors for transformations, 116–118

246  ■   versions – Zechner

versions
Blender, 34–35
Eclipse, 168
GSVideo, 106
jMonkeyEngine, 166–167, 166
managing, 168–170, 169–170
NyAR4psg library, 109

vertices
bones, 75
extruding. See extruding
mesh subdividing, 37
Mirror modifier, 39, 40–41
rotating, 44

views
alien character, 35–36, 36
Blender 2.49 and Blender 2.58, 208–210,

209–211
virtual devices, 195–196, 195–196
virtual reality (VR), 2
visibility of layers, 65, 65
vision-based AR, 2
VR (virtual reality), 2

W
walk cycle, 79–85, 80–85
webcams, 109
weights

calibration, 124, 125
scales, 133–134, 133–134

WhackAMole application, 146
width

images, 57
rectangles, 20

Wikitude World Browser, 2, 190
Window Type menu, 214

windows
size, 15–16
splitting and merging, 210, 211

WinVDIG video digitizer, 169
Wireframe node, 177, 177
wireframes, 37, 88
wires for breadboards, 123–127, 126
Wiring platform, 4, 122
World Properties window, 215, 215
Wright, Richard S., 203

X
X-Axis Mirror option

armatures, 75
Blender 2.49 and Blender 2.58, 217, 217

x coordinates
Bouncers, 29
lighting, 90

X-Ray display mode
armatures, 75
Blender 2.49 and Blender 2.58, 217

XCF files, 65
XML format, exporting to, 228–229, 229

Y
y-axis scaling, 40, 40
y coordinates

Bouncers, 29
lighting, 90

Z
ZBuffer node, 177, 177
Zechner, Mario, 203

	Prototyping Augmented Reality
	Acknowledgments
	About the Author
	About the Technical Editor
	Introduction
	Chapter 1: Getting Started with Augmented Reality
	What Is Augmented Reality?
	Tools and Technologies
	AR Necessities

	Chapter 2: Introduction to Processing
	The Processing Programming Environment
	Drawing in Processing
	Working with Classes

	Chapter 3: Blender Modeling and Texturing Basics
	Modeling with Blender
	Baking a Smooth AO Texture
	Creating a Finished Texture with GIMP

	Chapter 4: Creating a Low-Poly Animated Character
	Texturing Your Low-Poly Alien
	Rigging the Model
	Keying a Simple Walk Cycle

	Chapter 5: 3D Programming in Processing
	The P3D and OpenGL Environments
	Working with OBJ files
	Simple Animation with OBJ Arrays

	Chapter 6: Augmented Reality with Processing
	The NyAR4psg Library
	Digging into the Sample Code
	Controlling Transformations with Multiple Markers

	Chapter 7: Interacting with the Physical World
	Physical Computing with Arduino
	Sensors and Circuits
	Communicating Between Arduino and Processing

	Chapter 8: Browser-Based AR with ActionScript and FLARManager
	The FLARManager AR Toolset for ActionScript
	Getting FLARManager Up and Running
	Creating Your Own Projects

	Chapter 9: Prototyping AR with jMonkeyEngine
	Introducing jMonkeyEngine and ARMonkeyKit
	Exploring ARMonkeyKit
	Thoughts from the Developer

	Chapter 10: Setting Up NyARToolkit for Android
	Android and the Android SDK
	NyARToolkit for Android
	Going Further with Android

	Appendix A: From Blender 2.49 to Blender 2.58
	Basics and Views
	Mesh Modeling
	Texturing, Baking, and Materials
	Rigging and Animation

	Appendix B: File Formats and Exporting
	Development Environments and File Formats
	Exporting from Blender

	Index

