WARNING:
JavaScript is turned OFF. None of the links on this concept map will
work until it is reactivated.
If you need help turning JavaScript On, click here.
This Concept Map, created with IHMC CmapTools, has information related to: Polynomials, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mfrac> <mtext> any # </mtext> <mtext> any # </mtext> </mfrac> </mrow> </math> unless it reduces to a whole number, Functions can be Rational, odd integer always symmetrical to origin, writing a polynomial as a product of polynomials of lesser or equal degrees may be used to simplify a first degree polynomial, odd integer always contains (0,0), <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> x </mtext> <none/> <mtext> 3 </mtext> </mmultiscripts> </mrow> </math> (0,0) <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> x </mtext> <none/> <mtext> 3 </mtext> </mmultiscripts> </mrow> </math>, a polynomial in completely factored form means a polynomial written as a product of non factorable polynomials, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> function of the form: f(x) = </mtext> <mmultiscripts> <mtext> a </mtext> <mtext> n </mtext> <none/> </mmultiscripts> <mmultiscripts> <mtext> x </mtext> <none/> <mtext> n </mtext> </mmultiscripts> <mtext> + </mtext> <mmultiscripts> <mtext> a </mtext> <mtext> n-1 </mtext> <none/> </mmultiscripts> <mmultiscripts> <mtext> x </mtext> <none/> <mtext> n-1 </mtext> </mmultiscripts> </mrow> </math> real world example Calculating Interest (see worksheet link), Polynomial Functions degree 0 polynomial, horizontal line Constant, standard form is decending order of the value of the powers, Degrees (what power the variable is raised to) such as <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> x </mtext> <none/> <mtext> 3 </mtext> </mmultiscripts> </mrow> </math>, Real Zeros of a Function also called 0 of f or root of f, Functions can be logarithmic, Functions can be Linear, even integer always contains -1,1), Real Zeros of a Function are the x-intercepts of its graph, <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> x </mtext> <none/> <mtext> 2 </mtext> </mmultiscripts> </mrow> </math> is a second degree term, POLYNOMIAL FUNCTIONS are Functions, odd integer always Domain all real #s Range all real #s, Degree the sum of all the variable exponents in an equation