Warning:
JavaScript is turned OFF. None of the links on this page will work until it is reactivated.
If you need help turning JavaScript On, click here.
This Concept Map, created with IHMC CmapTools, has information related to: Momentum, figure skaters rotate slowly is arms are out, but they rotate fast when they pull their arms in. why? because the skater's mass cannot change, her velocity must., after is <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> mass </mtext> <mtext> object 1 </mtext> <none/> </mmultiscripts> <mtext> ∗ </mtext> <mmultiscripts> <mtext> velocity </mtext> <mtext> object 1 </mtext> <none/> </mmultiscripts> <mtext> ∗ </mtext> <mmultiscripts> <mtext> radius </mtext> <mtext> object 1 </mtext> <none/> </mmultiscripts> <mtext> + </mtext> <mmultiscripts> <mtext> mass </mtext> <mtext> object 2 </mtext> <none/> </mmultiscripts> <mtext> ∗ </mtext> <mmultiscripts> <mtext> Velocity </mtext> <mtext> object 2 </mtext> <none/> </mmultiscripts> <mtext> ∗ </mtext> <mmultiscripts> <mtext> radius </mtext> <mtext> object 2 </mtext> <none/> </mmultiscripts> </mrow> </math>, direction of the vector is +, If the sum if the torques on a system is equal to zero, then the angular momentum never changes mathematicall as <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mmultiscripts> <mtext> mass </mtext> <mtext> object 1 </mtext> <none/> </mmultiscripts> <mtext> ∗ </mtext> <mmultiscripts> <mtext> velocity </mtext> <mtext> object 1 </mtext> <none/> </mmultiscripts> <mtext> ∗ </mtext> <mmultiscripts> <mtext> radius </mtext> <mtext> object 1 </mtext> <none/> </mmultiscripts> <mtext> + </mtext> <mmultiscripts> <mtext> mass </mtext> <mtext> object 2 </mtext> <none/> </mmultiscripts> <mtext> ∗ </mtext> <mmultiscripts> <mtext> Velocity </mtext> <mtext> object 2 </mtext> <none/> </mmultiscripts> <mtext> ∗ </mtext> <mmultiscripts> <mtext> radius </mtext> <mtext> object 2 </mtext> <none/> </mmultiscripts> </mrow> </math>, When the sum of the forces working on a system is zero, the total momentum in the system cannot change mathematically <math xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mtext> ( </mtext> <mmultiscripts> <mtext> mass </mtext> <mtext> object 1 </mtext> <none/> </mmultiscripts> <mtext> ∗ </mtext> <mmultiscripts> <mtext> velocity </mtext> <mtext> object 1 </mtext> <none/> </mmultiscripts> <mtext> + </mtext> <mmultiscripts> <mtext> mass </mtext> <mtext> object 2 </mtext> <none/> </mmultiscripts> <mtext> ∗ </mtext> <mmultiscripts> <mtext> velocity </mtext> <mtext> object 2 </mtext> <none/> </mmultiscripts> <mmultiscripts> <mtext> ) </mtext> <mtext> before </mtext> <none/> </mmultiscripts> <mtext> = </mtext> <mrow> <mtext> ( </mtext> <mmultiscripts> <mtext> mass </mtext> <mtext> object 1 </mtext> <none/> </mmultiscripts> <mtext> ∗ </mtext> <mmultiscripts> <mtext> velocity </mtext> <mtext> object 1 </mtext> <none/> </mmultiscripts> <mtext> + </mtext> <mmultiscripts> <mtext> mass </mtext> <mtext> object 2 </mtext> <none/> </mmultiscripts> <mtext> ∗ </mtext> <mmultiscripts> <mtext> velocity </mtext> <mtext> object 2 </mtext> <none/> </mmultiscripts> <mmultiscripts> <mtext> ) </mtext> <mtext> after </mtext> <none/> </mmultiscripts> </mrow> </mrow> </math>, Newton's Laws (Apologia Physics Module 6) can be expanded and applied to Momentum (Apologia Physics Module 10), Lecture 3 covers The Law of Angular Momentum Conservation, Heat and Energy are combined in Work and Energy (Apologia Physics Module 9), Lecture 1 covers Impulse, direction of the vector is -, p = (m)(v) can be used with Impulse, the longer the force can be applied the more momentum you can apply to the object in cushioning impact if you can increase the time to stop an object you get a better cussion for imapct., The Law of Momentum Conservation appplies only to friction force is negligible, The Law of Angular Momentum Conservation examples figure skaters rotate slowly is arms are out, but they rotate fast when they pull their arms in., Two-Dimentional Motion (Apologia Physics Module 5) which uses Two Dimensional Vectors (Apologia Physics Module 4), Physics has several branches of study such as Sound and Hearing, p is momentum is p = (m)(v), Statics deals with Forces in the absence of changes in motion or energy, Momentum defined as p = (m)(v), Lecture 1 covers Momentum