As an example of this type of results, it can be proved that if $\gamma>\beta$, the $G H D \mathrm{I}(\alpha, \beta, \gamma, \lambda)$ is the mixture

$$
\operatorname{Poisson}(\Lambda) \wedge_{\Lambda} \operatorname{Gamma}\left(\alpha, \frac{\lambda(1-P)}{1-\lambda(1-P)}\right) \underset{P}{\wedge} \operatorname{GBeta}(\gamma-\alpha-\beta, \beta, \alpha, \lambda)
$$

(2.4)
where $G B e t a(\gamma-\alpha-\beta, \beta, \alpha, \lambda)$ denotes a generalization of the Beta distribution whose density function is

$$
f_{P}(p)=\frac{1}{{ }_{2} F_{1}(\alpha, \beta ; \gamma ; \lambda)} \frac{\Gamma(\gamma)}{\Gamma(\gamma-\beta) \Gamma(\beta)} \frac{p^{\gamma-\beta-1}(1-p)^{\beta-1}}{(1-\lambda(1-p))^{\alpha}}, \quad 0 \leq p \leq 1 .
$$

