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Abstract

In this work we present a study about the properties of the family of dis-
crete distributions generated by the Gaussian hypergeometric function, named
GHD(α, β, γ, λ). This family generalizes some widely known distributions, such
as the Waring distribution. In this sense, results about several probabilistic aspects
are included (its expression as mixture of distributions, a partition of the variance,
etc.). Finally, its applicability by the modelling and the interpretation of data sets
originating from fields such as Sports is shown.
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1 Introduction

The family of Gaussian Hypergeometric Distributions is characterized by
its probability generating function, given by the Gaussian hypergeometric
function (except for the constant)

2F1 (α, β, γ, λz) =
∞∑

r=0

(α)r (β)r

(γ)r

(λz)r

r!
. (1.1)

The probability mass function is

fr = P [X = r] = f0
(α)r (β)r

(γ)r

λr

r!
, r = 0, 1, ..., (1.2)

where f0 is the constant of normalization. We denote these distributions
as GHD (α, β, γ, λ) .
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Table 1: Classification of the GHD family (α and β are interchangeable)

Parameters Conditions Range Type
α, β > 0 γ > α + β if λ = 1 [0,∞) I

0 < λ ≤ 1
α, β ∈ C,
α = β̄

γ > α + β if λ = 1 [0,∞) II

γ > 0
α, β < 0,
α, β /∈ Z

− [α] = [β] [0,∞) III

0 < λ
α, β < 0,
α ∈ Z

− |β| > |α| − 1 [0, |α|) IV

λ < 0 α ∈ Z
−, β > 0 [0, |α|) V

0 < λ ≤ 1
α < 0, α /∈ Z

−,
β > 0

[α] = [γ],
γ > α + β if λ = 1

[0,∞) VI

γ < 0 0 < λ α ∈ Z
−, β > 0 |γ| > |α| − 1 [0, |α|) VII

λ < 0
α, β < 0,
α ∈ Z

− |γ| , |β| > |α| − 1 [0, |α|) VIII

A general summation result for computing the f0 value is unknown.
When λ = 1, the Gauss Summation Theorem establishes that

f0 =
Γ (γ − α) Γ (γ − β)
Γ (γ) Γ (γ − α − β)

. (1.3)

Table 1 includes the conditions of the parameters that allow the series
(1.1) to converge and that guarantee the positivity of all its terms. Type II
has been studied by Rodŕıguez-Avi et al. (2003a, 2004); likewise, the case
λ = 1 has been analyzed by Rodŕıguez-Avi et al. (2003b), Sibuya (1979)
and Sibuya and Shimizu (1981), among others.

Many well-known distributions (Poisson, Negative Binomial, Binomial,
Beta-Binomial, Hypergeometric, Waring, etc.) belong to the GHD family
or they are limit cases of that distributions, as it is shown in Table 2.

2 Properties

Moreover, fr is the solution of the extended Pearson system

G (r) fr+1 − L (r) fr = 0, r = 0, 1, 2, ..., (2.1)
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Table 2: Some distributions and their p.g.f. in relation with the Gauss function

Distribution P.g.f.

Binomial 2F1 (−n, β; β; λz)
2F1 (−n, β; β; λ)

, λ = − p

1 − p

Poisson limn→∞
p→0

2F1 (−n, β; β; λz)
2F1 (−n, β; β; λ)

, λ = np

Negative Binomial 2F1 (k, β; β; (1 − p) z)
2F1 (k, β; β; 1 − p)

Crow-Bardwell limβ→∞
2F1

(
1, b; λ;

θz

b

)

2F1

(
1, b; λ;

θ

b

)

Extended Crow-Bardwell limβ→∞
2F1

(
β, b; λ;

θz

b

)

2F1

(
β, b; λ;

θ

b

)

Hypergeometric 2F1 (−n,−M ; N − M − n + 1; z)
2F1 (−n,−M ; N − M − n + 1; z)

Negative Hypergeometric 2F1 (−n, M ; M − N − n + 1; z)
2F1 (−n, M ; M − N − n + 1; 1)

Waring 2F1 (1, k; k + ρ + 1; z)
2F1 (1, k; k + ρ + 1; 1)

Generalized Waring 2F1 (a, k; a + k + ρ; z)
2F1 (a, k; a + k + ρ; 1)

CBPD 2F1 (bi,−bi; γ; z)
2F1 (bi,−bi; γ; 1)

CTPD 2F1 (a + bi, a − bi; γ; z)
2F1 (a + bi, a − bi; γ; 1)

where functions L and G are second-degree polynomials

L (r) = (α + r) (β + r)λ

G (r) = (γ + r) (r + 1) .
(2.2)

From (2.1) Fajardo (1986) proved that non-central moments verify the
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recurrence equation

µ′
h+2 + (γ − 1)µ′

h+1 − λ
h∑

m=0

(
h

m

) [
µ′

m+2 + (α + β)µ′
m+1 + αβµ′

m

]
= 0,

(2.3)
for h = 0, 1, 2, ... if λ < 1 or the distribution is finite, and for h =
0, 1, 2, ..., k − 2 if λ = 1 and γ > α + β + k with k ≥ 2. It is of note
that this recurrence relation can not generally provide explicit expressions
of moments from parameters, because n equations involve n + 1 moments;
nevertheless, if λ = 1, n equations involve n moments which may be calcu-
lated as solutions of the corresponding linear system.

On the other hand, as Johnson et al. (1992) suggest, the GHD distri-
butions, generated by the 2F1 function, may be seen as mixtures of dis-
tributions generated by the 1F0 and the 1F1 functions where the mixing
distributions are generalized Beta and Gamma distributions, respectively.
A clearer methodology in order to make explicit these results is given by
the conditional specification of these distributions: Arnold et al. (1999)
provide a result in exponential families that determines the most general
marginal distributions when the conditional distributions are assumed.

As an example of this type of results, it can be proved that if γ > β,
the GHD I (α, β, γ, λ) is the mixture

Poisson (Λ) ∧
Λ

Gamma

(
α,

λ (1 − P )
1 − λ (1 − P )

)
∧
P

GBeta (γ − α − β, β, α, λ) ,

(2.4)
where GBeta (γ − α − β, β, α, λ) denotes a generalization of the Beta dis-
tribution whose density function is

fP (p) =
1

2F1 (α, β; γ; λ)
Γ(γ)

Γ(γ − β)Γ(β)
pγ−β−1 (1 − p)β−1

(1 − λ (1 − p))α , 0 ≤ p ≤ 1.

(2.5)

3 Applications

This type of results about mixtures allows us to obtain interesting conclu-
sions about the variability of data.

Thus, if γ > β and X � GHD I (α, β, γ, λ) ,

V arX = αEP [V ] + αEP

[
V 2

]
+ α2V arP (V ) , (3.1)
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where V = λ (1 − P ) /(1 − λ (1 − P )) and P � GBeta (γ − α − β, β, α, λ).
The first of these addends is related to random factors, the second to the
variability due to external factors that affect the population (liability), and
the third to the differences in the internal conditions of the individuals
(proneness). The result is an extension of that known in the case λ = 1,
corresponding to the Waring distribution.

One of the main drawbacks of the GHD is that the parameters α and
β are interchangeable. Thus, in practice, the identification of the latter
two components in (3.1) is not clear without some additional information
about the framework of application. Irwin (1968) suggests that “the statis-
tician will usually know from studying the data in various ways whether
the proneness or the liability component should be the greater”.

Next, we carry out the fit of two data sets by the GHD I distributions
and we obtain and interpret the partition of the variance given by the above
result.

3.1 Number of goals scored by the footballers

Data correspond to the number of goals scored by the footballers that have
played at least one match in the 2000/01 football season of the Spanish
League1.

The method of maximum likelihood provides the fit given by the GHD
(0.5468, 8.1142, 9.0597, 0.8621). It should be emphasized that none fit can
be found by the Waring distribution. Table 3 contains the observed and
expected values, while the obtained fit may be graphically seen in Figure
1.

Regarding the decomposition of the model variability, the involved fac-
tors may be interpreted as follows:

• Proneness: There are footballers who are more prone to score goals
than others, independently of the position they have in the ground.
V.gr., there exist defenses who are more prone to go on the offensive
and to score. In fact, this factor may be defined as goal intuition.

• Liability: The probability of scoring is related to the place that the
1Excluding the goalkeepers.
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Figure 1: Number of goals scored. Season 2000/01

footballer has in the ground. Thus, a forward has much chance to
score in a match.

• Randomness: There are random circumstances that make a footballer
score in a match.

The quantifying of the variability corresponding to these three factors
in the proposed model for data appears in Table 4.

3.2 Yellow cards

In this case the variable is Number of yellow cards shown to footballers2.
Season 2000/01. It should be noted the steep shape the variable presents,
as it can be seen in Figure 2.

2excluding the goalkeepers
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Table 3: Fit for goals scored. Season 2000/01

xi Oi Ei(a)
0 203 201.7353
1 77 85.1727
2 59 51.4513
3 36 34.4363
4 27 24.2601
5 19 17.6420
6 10 13.1148
7 4 9.9104
8 7 7.5852
9 8 5.8658
10 4

}
8.1690

11 5
12 2

}
5.0984

13 1
14 3




9.5587

15 1
16 3
17 1
19 1
22 1
23 1
24 1

Total 474 474
χ2 9.0427
d.f. 8

p-value 0.3387

The method of maximum likelihood provides the fit given by the GHD
(797.5941, 0.5386, 13.4859, 0.0217). The results are shown in Table 5 and
the goodness of fit can be graphically seen in Figure 2. In this case, fits
accuracy enough with any other discrete distribution with fewer parameters
have not been found.

Provided that the proposed model is a GHD I distribution, the vari-



8 J. Rodŕıguez, A. Conde, A.J. Sáez and M.J. Olmo

Table 4: Partition of the variance

Factor Variability % of variability
Randomness 2.24669 17.2068
Liability 10.2401 78.4957
Proneness 0.5606 4.2975
Total 13.0454 100

Table 5: Fit for number of yellow cars by footballer. Season 2000/01

xi Oi Ei(a)
0 82 80.9469
1 54 55.9536
2 54 51.4949
3 47 48.8237
4 50 45.5157
5 45 41.0998
6 27 35.7440
7 32 29.8790
8 23 23.9965
9 14 18.5231
10 15 13.7532
11 10 9.8320
12 12 6.7746
13 2




11.6630
14 4
15 1
16 1
17 1

Total 474 474
χ2 9.2736
d.f. 9

p-value 0.4124

ance can also be split into three components. At this point, an empirical
interpretation of the factors may be established:
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Table 6: Partition of the variance

Factor Variability % of variability
Randomness 4.15767 32.5206
Liability 8.59461 67.2256
Proneness 0.0324489 0.2538
Total 12.7847 100

• Proneness: There are footballers more prone to be shown yellow cards
than others because they are more violent or given to protesting.

• Liability: There are places in the ground occupying by the footballers
more prone to have a yellow card, as it happens with the centre-
forwards or the centre-halves.

• Randomness: A yellow card can be shown to a footballer because of
random circumstances with independence of his place in the ground
or his character.

The components of the variance in the proposed model for data are
included in Table 6.
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