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Abstract

Given that clinicians presented with identical clinical information will act in different ways, there is a need to
introduce into routine clinical practice methods and tools to support the scientific homogeneity and accountability of
healthcare decisions and actions. The benefits expected from such action include an overall reduction in cost, improved
quality of care, patient and public opinion satisfaction. Computer-based medical data processing has yielded methods
and tools for managing the task away from the hospital management level and closer to the desired disease and patient
management level. To this end, advanced applications of information and disease process modelling technologies have
already demonstrated an ability to significantly augment clinical decision making as a by-product. The wide-spread
acceptance of evidence-based medicine as the basis of cost-conscious and concurrently quality-wise accountable clinical
practice suffices as evidence supporting this claim. Electronic libraries are one-step towards an online status of this key
health-care delivery quality control environment. Nonetheless, to date, the underlying information and knowledge
management technologies have failed to be integrated into any form of pragmatic or marketable online and real-time
clinical decision making tool. One of the main obstacles that needs to be overcome is the development of systems that
treat both information and knowledge as clinical objects with same modelling requirements. This paper describes the
development of such a system in the form of an intelligent clinical information management system: a system which at
the most fundamental level of clinical decision support facilitates both the organised acquisition of clinical information
and knowledge and provides a test-bed for the development and evaluation of knowledge-based decision support
functions.
© 2002 Elsevier Science Ireland Ltd. All rights reserved.
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1. Background
1.1. On health care delivery

Dealing with the increasing cost of health care
delivery and the detrimental consequences on the
quality and effectiveness of clinical outcome is the
primary concern of health care delivery system
(HCDS) administrators and policy makers
throughout Europe. Until recently, HCDS control
primarily involved economic measures and activ-
ities. Today, such an approach is obviously
insufficient and often dangerously erroneous.
HCDS control may be both effectively as well as
efficiently performed qualitatively, to both the
indirect as well as the direct or immediate benefit
of the patient, via the proper implementation of
the comprehensive spectrum of knowledge, tech-
niques, and technologies developed by research in
measurement and information in medicine (MIM).
These tools allow supportive and often corrective
action to be taken much closer to the source of the
problem rather than in pursuit of compromising
costs and symptoms of an ailing control philoso-
phy.

During the past decade a number of relevant
methodologies have emerged, as dictated by key
qualitative cost—benefit control protocols. The
rapidly disseminated practices of evidence-based
medicine [1-3] and outcome-based medicine [4,5]
or disease management [6], are concepts which
were born and developed within the realm of MIM
and associated technologies, have led to the
proliferation of quite a number of proprietary
approaches to clinical decision making support.
Some of these include the use of advanced
information technologies, while some have negli-
gently avoided the use of the underlying enabling
tools. Evidence-based clinical guidelines [7,8] and
care pathways [9] are but a taste of these
approaches.

MIM researchers have for long maintained that
the effective introduction of IT to the task of
supporting and facilitating clinical decisions will
help improve the quality of patient care, in relation
to the management of disease as well as individual
conditions and patients, optimise the cost—benefit
equation, and ultimately transform the traditional

structure of health care provision. Furthermore,
substantial evidence has been produced that
strongly supports these claims. Clinical informa-
tion is the core of this (re)evolution towards
effective and efficient HCDS control, and support-
ing the management of clinical information is the
key to evidence-based decisions and disecase man-
agement. Systems designed to perform this func-
tion use a range of type of disease process
[knowledge] models, some of which have been
adequately assessed in terms of their potential to
improve decision making in real time. It is time to
accept the fact that MIM produces working results
in this respect and to grant the introduction of safe
and useful systems into routine clinical practice,
thereby enabling the effective and efficient appli-
cation of evidence-based and disease management
methodologies in clinical practice while at the
same time providing the necessary means for
improving both the quality of an HDCS as well
as of the experience these systems embody.

1.2. Review of the underlying decision support
technologies

Researchers in the fields of MIM, medical
informatics and artificial intelligence in medicine
(AIM) have for long maintained that the effective
introduction of information technology to the task
of supporting and facilitating clinical decisions,
will help improve the quality of patient care,
optimise the cost—benefit equation, and ultimately
transform the traditional structure of health care
provision [10--13]. Significant advances have in-
deed been achieved in these fields in the past three
decades [14,15] and, having demonstrated an
ability to effectively support clinical decisions
[16-19], knowledge-based systems (KBS) are be-
coming increasingly ubiquitous in various clinical
settings.

Nonetheless, few systems have so far been
successful in entering routine use. The two main
problems underlying this failure originate in that
KBS are evidence-based medical decision support
systems. This means that they are designed to
model diseases based on heuristic and therefore
imprecise and incomplete knowledge representa-
tions and are built to reason with partial belief and
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incomplete information using such representa-
tions. The difficulty faced in this context is
twofold. On the one hand, their successful opera-
tion results from linking together pieces of knowl-
edge as the result of considering patient
measurements and observations at various levels
of abstraction, in order to reach a logically valid
diagnostic or therapeutic conclusion given the data
and their knowledge content. In order for this to
work, KBS are mainly developed using Al pro-
gramming languages that are specifically designed
for this task. However, these languages are part of
an overall systems development environment
which does not lend itself to complex information
management systems development. As a result,
KBS are perceived primarily as experimental
entities and are essentially isolated from the
clinical environment itself. On the other hand,
KBS must be evaluated with regard to their ability
to effectively and safely support decisions and this
process is both extremely lengthy [16] as well as
nearly impossible as long as they are isolated from
the clinical environment [20]. With respect to
evaluating their correctness and accuracy, there is
neither an unambiguous standard against which to
compare the accuracy of the generated decision-
supporting information, nor a precise and absolute
method for establishing the correctness of the
process by which it is generated [21,22]. With
respect to evaluating their clinical effectiveness,
firstly their purpose in the clinical setting must be
clearly defined and secondly their performance
must be constructively assessed [23] within this
context. Since medical decision support problems
are broadly defined as determining, how, when,
and in what manner to provide information to
health care professionals in order to increase the
quality of their decisions with respect to individual
patients or populations of patients [21], the
purpose of developing KBS must be clinical
information management rather than direct and
pure diagnostic or therapeutic support.

Over the past decade or so it has become clear
that in order to provide the means to assess the
above problems and to develop effective solutions,
KBS and other clinical decision support systems
must be integrated within the information proces-
sing activity of the clinical user, for the develop-

ment of systems geared toward supporting the
management of clinical information [13-15,24]. A
good example of this is the well known QMR
system which was originally designed to function
as a standalone consultation system in the pioneer-
ing INTERNIST-1, II and CADUCEUS Al
mmcarnations, and which became successful in
clinical practice as a diagnostic aid following its
conversion into an integrated clinical information
management tool [25-29].

2. The integrated system

2.1. Aims and objectives

The intelligent clinical information management
support (ICIMS) system described below has been
developed with the aim of overcoming the afore-
mentioned obstacles encountered in the develop-
ment and dissemination of clinical decision
support KBS. More specifically, ICIMS has been
designed and developed with the aim to integrate a
prolog prototype blood—gas analysis interpreta-
tion KBS called BGAS into the routine clinical
information management environment of the cri-
tical care unit (CCU) and to provide a test-bed for
the development and evaluation of clinically
effective intelligent-agent decision support func-
tions. Specific objectives were:) >

1) To design a system which combines the
computer-based clinical decision support tasks
of the acquisition, organisation, storage, up-
date and review of the information generated
in the process of monitoring the ICU patient,
as well as of the domain knowledge-base
required for the contextual interpretation of
the acquired clinical information, within a
singular system architecture.

2) To use the clinical information management
support system in order to develop and
constructively assess the integration of the
cognitive, clinical information processing
tasks comprising the prototype KBS interpre-
tative problem-solving task-domain into the
ICIMS system and consequentially into clin-
ical practice, in order to incorporate the

L
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computational intelligence necessary for the
interpretation of the patient data acquired in
the process being supported.

3) To provide the means to assess specific
problems encountered in the integration pro-
cess, and to develop effective solutions, by
employing an approach which enables the
active participation of a clinical advisor who
acts as an assessor of the functional, cognitive
and ergonomic effectiveness of the KBS in-
tegration process, and of the overall decision
support provided by the ICIMS system during
its development.

2.2. The KBS prototype

An ecarlier system, BGAS, was developed in
prolog to provide computational tools for the
acquisition, representation and manipulation of
the domain knowledge-base required for interpre-
tative decision-making in the domain of acid-base
balance, and to assess the performance of a singly
connected hierarchical belief network in providing
assistance with the interpretation of blood—gas
laboratory analysis data [30,31]. A knowledge
editing environment, named Framebuilder, was
developed to enable clinicians to construct a strict
hierarchy of probabilistic classification knowledge
frames, and to specify expected patterns of evi-
dence for the recognition of 16 simple and complex
disorders of acid-—base metabolism, by choosing
clinical parameters from a vocabulary of labora-
tory data, signs and symptoms, relations between
data variables and clinical history.

Fig. 1 depicts the prototype belief network
which was constructed using Framebuilder for
the probabilistic classification of the evidential
information generated by blood—gas analyses.
Each clinical parameter specified in the disorder
profile frames was accompanied by the conditional
probability of the particular piece of evidence
being observed, given the disorder represented in
the frame. Furthermore, each frame was assigned
an a priori value of the probability of the
occurrence of the represented disorder given no
evidence had been observed. Table 1 lists the 16
disorder profiles represented in the prototype
knowledge base, along with their basic definitional

features. The hierarchical belief network con-
structed using Framebuilder was processed in the
manner suggested by Ref. [32], in order to assess
and propagate the effect of each piece of evidence
given in a case, using a blackboard controlled,
task-specific reasoning module for the construc-
tion of patient-specific models (PSM) of probabil-
istic classification, from the general hierarchical
model [33]. Fig. 2 depicts the resultant dual-
panelled blackboard architecture with its asso-
ciated interpretative task-domain knowledge
sources.

PSM blackboard entries were split into five
levels of abstraction for the physiological diagno-
sis panel, and four levels of abstraction for the
clinical diagnosis panel. The physiological diag-
nosis panel was designed to function in a bottom-
up manner, starting from raw patient data and
proceeding up toward the root of the virtual PSM
hierarchy, to produce a differential diagnosis of
disorders of acid—base metabolism. The clinical
diagnosis panel was designed to work in the
opposite direction, starting with a clinical diag-
nosis entered by the user and proceeding down
toward the leafs of the virtual PSM hierarchy to
generate expected consequences, which were latter
used to critique the results from the physiological
diagnosis panel in order to refine complex inter-
pretative hypotheses which could not be differ-
entiated in the light of measurement data alone.

Following a series of tests performed in order to
evaluate the translation of a theoretical design into
a working prototype, the system was retrospec-
tively evaluated with 60 cases of perturbed acid—
base metabolism and was found to perform at the
level of the expert who designed the knowledge-
base. Not counting the cases of complex disorders,
the evaluation study showed that BGAS was in
agreement with either the expert or senior clinician
involved in the study in 83% of the evaluation
cases. In order to proceed with designing methods
to resolve the diagnosis of complex disorders, it
was necessary to integrate the KBS reasoning
engine into the routine clinical information man-
agement environment of blood~gas analysis in the
CCU. This has been achieved via the development
of the ICIMS system.
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Fig. 1. The prototype knowledge-base for interpretative decision support in the domain of acid—base balance, organised in a strict

hierarchy of disorder profile frames.

2.3. Methodology

The above stated three objectives underlying the
development of the ICIMS system, have been
pursued and accomplished via an iterative, incre-

mental, and user-driven, object-oriented analysis,
design, and implementation approach, which
starts with the design of a clinical information
object handling system, and proceeds upwards and
closer to modelling the user’s requirements for

Table 1
Acid-base balance disorders represented in the ICIMS system knowledge base with respective definitional features
Represented acid—base balance disorders A priori belief pCO, [HCOT] pH
Respiratory alkalosis, uncompensated 0.0833 L N H
Respiratory alkalosis, partially compensated 0.0416 L L-N H
Metabolic alkalosis, uncompensated 0.0833 N H H
: Metabolic alkalosis, partially compensated 0.0416 H-N H H
i Respiratory acidosis, uncompensated 0.0833 H N L
Respiratory acidosis, partially compensated 0.0416 H H-N L
Metabolic acidosis, uncompensated 0.0833 N L L
Metabolic acidosis, partially compensated 0.0416 L-N L L
Respiratory alkalosis+metabolic alkalosis 0.0833 L H H
Respiratory acidosis +metabolic acidosis 0.0833 H L L
Respiratory acidosis+metabolic alkalosis 0.0277 H H N
Respiratory acidosis, compensated 0.0277 H H N
Metabolic alkalosis, compensated 0.0277 H H N
Respiratory alkalosis+metabolic acidosis 0.0277 L L N
Respiratory alkalosis, compensated 0.0277 L L N
Metabolic acidosis, compensated 0.0277 L L N




70 D.A. Kalogeropoulos et al. | Computer Methods and Programs in Biomedicine 72 (2003) 65-80

Clinical Diagnosis Panel

From —p Input > DIAGNOSIS K"é’m?é’é’ ©
Database Diagnosis 7
/ sT is
gl |5
Dl?redéct > PREDICTION & g
isorders /
Critique > CRITIQUE —_—
Diagnosis / Database
E)Ztabase < Tr%r;ier > MANIFESTATIONS
Physiological Diagnosis Panel
Sum SUB-DIAGNOSIS |« Rank
Hypotheses Hypotheses
i HYPOTHESIS Laboratory
Evidence \\ Data
Truth \—>»| SUB-HYPOTHESIS < Numerical
Maintenance Relationships
To «—{ Write Default CLASSIFIED DATA Classify
Database Data < Raw Data
From > . Data
Database Write Data RAW DATA < 3| Derivation

To
Database

Fig. 2. Implementation of the blackboard model of problem solving in the KBS prototype (from Chelsom, 1990).

information processing support, by appending
further object-oriented layers of clinical informa-
tion management and decision support, to even-
tually include the BGAS interpretative task-
domain model, and high-level interfaces for the
review and update of the information acquired and
generated in the process of monitoring CCU
patients.

Object-oriented software engineering provides
methods for the analysis, design, and implementa-
tion of IT systems, based on the principles of
abstraction, encapsulation, modularity, hierarchy,
typing, concurrency and persistence. What makes

object-orientation particularly suited to the devel-
opment of complex integrated systems is that the
methodology brings these elements together into
an incremental, unified decomposition, representa-
tion and implementation framework for modelling
complex systems, with a structure-preserving
transformation of concepts to maintainable im-
plementations [34].

The ICIMS system has been developed within
the Borland C+ + environment, using the stan-
dard Windows Application Programmers Inter-
face (API) for the construction of the users’ high-
level access interfaces. C+ + is an object-oriented
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software development environment, however,
C+ + does not provide mechanisms for creating
and handling persistent objects, that is objects
whose class instantiation inheritance, class struc-
ture inheritance, and state is saved, and transcends
the lifetime of an individual program, thereby
providing the ability to create and manipulate
persistent world models. Introducing the concept
of persistence to the object model, gives rise to
object-oriented databases, and enables the devel-
opment of integrated systems with superior per-
formance in data handling both in terms of
representational as well as reasoning power and
efficiency. This property of the object-oriented
support system has been added by means of the
POET (Persistent Objects Extended Database
Technology) pre-compiler, which reads class inter-
faces and creates persistent objects from classes
and class structures, or models, which are declared
persistent.

Object Management System

- Acquisition (model instantiation)

- Update (patient & knowledge objects)
- Review (patient & knowledge objects)

2.4. Top-level architectural view

Fig. 3 presents a top-level view of the layered,
modular ICIMS system architecture. The clinical
object base (COB) module shown in the middle,
forms the kernel of the domain abstraction and
support system integration process, by functioning
as a global memory of persistent model-derived
objects. There are three types of persistent model
or persistent class structures in the system. The
patient record model (PRM) class structure has
been designed for the derivation of the persistent
objects required to support the management of the
clinical information generated in the process of
monitoring the ICU patient. The domain knowl-
edge model (DKM) class structure has been
designed for the derivation of the persistent objects
required to support the management of the knowl-
edge-base utilised in the interpretation of the
acquired clinical information. Finally, the pa-

Knowledge-Based Data Interpretation System
- Patient-specific model X.1 instanitation for
Interpretative decision support on Patient X

Patient
Record
Model

Task Domain Model
(Knowledge-based clinicat
information processing tasks)

Measurement
Instrumentation
Device 1
(Blood-gas analyser)

Clinical Object Base
(Global memory of persistent model-derived objects)

Patient-Specific
Disorder Model
(Interpretative
hypothesis space)

Domain
Knowiedge Model
{Belief network)

Acid-base metabolism
hierarchical classification model

Patient-specific model X.1

Fig. 3. Top-level view of the layered ICIMS modular architecture.
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tient-specific model (PSM) class structure has been
designed for the derivation of the blackboard
objects required to support the application of the
task-domain model (TDM) for evidence propaga-
tion in the hierarchical belief network contained in
the COB.

The object management system (OMS), which
includes an object communication system (OCS)
module and the knowledge-based data interpreta-
tion system (DIS) module, has been designed to
monitor the sources of patient data connected to
the ICIMS system via serial data communication
mnterfaces, integrate, store and organise the ac-
quired patient data, in this case the results of the
blood-gas analysis, by creating instances of the
PRM class structure, interpret the data stored in
the PRM model-derived object structures, and
display their contents in a manner which converts
it to information, thereby providing the clinical
decision support required to avoid the misinter-
pretation and consequentially mismanagement of
an observed clinical problem under conditions of
information overload and contextual complexity.

Thus, for each set of evidence generated by the
blood-gas analyser, the DIS module will instanti-
ate a PSM class structure, by applying the reason-
ing operators that comprise the TDM of the KBS
prototype (Fig. 2). So, as shown in Fig. 3, for
patient [X], ICIMS will construct the patient-
specific model [X.1] of the patient’s interpretative
hypothesis space for disorders of acid—base meta-
bolism, given the set [E.1] of the patient’s blood—
gas measurements, and so on.

Finally, the OMS module may also be used in
order to update and review the information
contained in each patient record as well as the
knowledge contained in the hierarchically con-
nected frames that comprise the DKM, as depicted
in Fig. 1. As in the case of the patient records, each
knowledge frame is an instantiation of the DKM
persistent class structure.

2.5. Entity models for the derivation of the COB

As stated above, the COB of the ICIMS system
comprises a number of persistent objects which are
derived from three models or class structures
represented in the system and shown in Fig. 4.

These are the PRM, DKM and PSM, which
correspond to base requirements for patient data,
domain knowledge and solution state acquisition,
representation and manipulation, and which were
used to support and facilitate the functional
integration of the data interpretation KBS proto-
type, and the development of further clinical
information management and decision support
layers in the information processing task-domain
of monitoring acid—base balance disorders.

As shown in Fig. 4, the persistent object
structures derived from the three classes of persis-
tent system model inherit the properties of the
class of COB objects. This means that these objects
are constructed and managed using the methods
provided by the persistent class administration
system (PCAS) of the POET pre-compiler. More
specifically, amongst others, PCAS provides meth-
ods for constructing, opening and closing the
COB, assigning objects to the COB, accessing the
objects contained in the COB, creating, searching
and manipulating sets of objects, retrieving objects
from the COB, inserting and appending objects,
storing, deleting, locking and watching objects,
and querying the COB. These methods are in-
herited by each and every persistent class in the
system.

2.6. Action models for the functional manipulation
of the COB

Object-oriented systems are organised as co-
operative collections of objects, each of which
represents an instance of some class of objects,
which in turn corresponds to some problem
domain abstraction and which is a member of a
hierarchy of classes united via inheritance relation-
ships. Once instantiated, objects exist for some
time, during which time they can act on other
objects and be acted upon by other objects,
thereby be changed, shared and destroyed. Thus,
objects encompass two types of abstraction: entity
and action abstractions [34].

In the ICIMS system, the persistent object
structures contained in the COB constitute the
majority of the entity abstractions required to
support the integration-development process. This
architectural feature confers the required ability to
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Fig. 4. Class diagram of the models used by the ICIMS system OMS module for the derivation of the persistent object structures
required to support the management of the clinical information generated in the process of monitoring the ICU patient, the knowledge
base utilised for the interpretation of the acquired clinical information, and the blackboard objects required to support the application

of the prototype task-domain model.

develop, append, and constructively assess layers
of action abstractions, which make use of the
underlying COB entities in order to provide the
required clinical information management and
decision support functionality, in a manner which
is ergonomically and cognitively compatible with
the patient care activity of the user, without
affecting the underlying object structures or their
contents in the process.

Thus, as shown in Fig. 3, the first layer of the
incremental ICIMS system development comprises
the COB module, which uses the PCAS for
handling the persistent object structures derived
and maintained by means of the second layer,
which comprises the object derivation models.
Similarly, the OMS module is one level closer to
the user since it provides the required functionality
of patient data and domain knowledge acquisition,

update and review, and a step closer to the
integration of the KBS prototype, since it is at
this stage that most of the clinical advisor’s
constructive assessment is translated into the
evolutionary modifications pertaining to the KBS
prototype integration process.

2.7. The object management system module

The first layer of action modelling which has
been appended onto the basic object handling
system is the OMS module. The OMS module, the
class diagram of which is shown in Fig. 5, has been
developed to generate Windows API dialogues
with the user, which were designed to reflect the
anatomy of the persistent object structures con-
tained in the COB, thereby facilitating the review
and update of their contents as described above.
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Fig. 5. Class structure diagram linking the ICIMS system COB to the OMS module, for the acquisition, review and update of the data

and knowledge model derived objects.

An example of the type of dialogue generated by
the system in order to review and update the
contents of the patient record COB is given in Fig.
6. As shown in the figure, the information
displayed in the patient window corresponds to
instances of the elements of the class of patient
objects (patient name, first name, hospital number
etc.), instances of the elements of the class of
blood—gas analysis objects, which are contained
within patient objects, and instances of the ele-
ments of the class of clinical features, also con-
tained within the class of patient objects.
Furthermore, the class of patient dialogues uses
the class of recognised actiology objects shown in
Fig. 4, in order to provide a vocabulary of terms
for the construction of a patient description.

The actions represented in the class of dialogue
windows, are performed by the buttons shown
below the list boxes which display the contents of
the object sets contained within patient objects,

and by the buttons which are vertically arranged
on the right hand side of the dialogue window. By
contrast to the former, which are defined as
member methods of the patient dialogue class
and are therefore specific to that class of COB
objects, the latter actions are inherited from the
patient dialogue superclass of object management
dialogues shown in Fig. 5, since the process of
storing, deleting, and scanning objects is common
to all classes of objects contained in the COB.
Fig. 7 shows the class structure diagram of
patient dialogue objects such as the one shown in
Fig. 6. As shown in Fig. 7, in order to perform the
represented clinical information management and
decision support function, patient dialogue objects
inherit the properties and methods of persistent
object management dialogues and use a number of
other classes of objects. These comprise: (1) the
class of persistent patient COB objects being
visualised; (2) the class of the corresponding set
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Fig. 6. Sample ICIMS system patient dialogue window.

of objects, which is required for searching the
COB; (3) the class of recognised aetiology objects
for editing patient descriptions; and (4) the class of
recognised aetiology object-sets, which is required
to search for available terms. The diagram also
shows that the objects contained within patient
objects, in this case blood—gas assay results, are
manipulated by the methods of a separate class of
dialogue windows, which is not shown here, but
handled and stored automatically by the methods
inherited from the class of object management
dialogues, which makes use of appropriate PCAS
methods. This dependency is denoted by the PCAS
link shown in Fig. 7.

2.8. The data interpretation system module

As stated above, the OMS module layer has
been appended onto the COB layer in order to
satisfy the user’s fundamental requirements for
clinical information management and decision

support. More specifically, the OMS module has
been designed to generate ergonomic dialogues
with the user, such as the one shown in Fig. 6, in
order to create the persistent data and knowledge
object structures contained in the COB, by deriv-
ing such object structures from the patient record
and DKMs, and to thereby also support and
facilitate the integration of the prototype inter-
pretative TDM required for the contextual inter-
pretation of the data acquired in the process of
monitoring patients with disorders of acid—base
balance. This corresponds to the third and final
stage of the prototype KBS integration process.
The DIS module has thus been designed to be
appended onto the OMS ICIMS system layer, in
order to instantiate a number of interpretative
dialogues with the user, which dialogues represent
the cognitive information processing tasks com-
prising the prototype TDM [30], and to thereby
derive the third class of persistent object structure,
that of the PSM, which as described above has
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been designed to take the place of the prototype
KBS blackboard.

Fig. 8 depicts an example of the class structure
of the dialogues generated by the DIS module for
the case of the BGAS interpretative information
processing knowledge source (KS) for the qualita-
tive abstraction of the acquired patient measure-
ments. The diagram shows that, following the
original blackboard model depicted in Fig. 2,
classification dialogue objects use: (1) raw data
objects, which are constructed using the appro-
priate PSM model upon the creation of a DIS
instance and filled-in with data from the blood—
gas analysis object being interpreted; (2) parameter
profile objects, in order to access the measurement
classification information stored in the knowledge
COB; and (3) processed data objects, which are
constructed by the class of dialogues to save the
state of the problem solution, following the
application of the represented KS. As before, the
corresponding sets of objects are used for search-
ing the COB.

Again, following the principles of abstraction,
encapsulation or information-hiding, and modu-
larity, for the development of open, maintainable
and re-usable systems, the classes of interpretative
behaviour abstraction for raw data classification,
and evidence impact, aggregation and propaga-
tion, were designed so that their client objects (the
DIS module or other interpretative KS objects) are
not required to know any of the implementation
details of the represented behaviour. Thus, in the
case of the example shown in Fig. 8, classification
dialogue objects declare in their class interface: (1)
as public (i.e. visible to client objects), only the
object’s constructor and destructor; and (2) as
private (i.e. visible only to the objects constructed
from the class), the parts of the COB accessed by
the represented KS and the methods the class uses
internally in order to perform the represented
interpretative action.

Thus, the DIS is called to construct the required
KS object using its class description, and to
destroy the object following its application. In
the meantime, the state of the system’s problem-
solving behaviour is encapsulated within the KS
object. As stated above, this means that although
implemented to support and facilitate the integra-

tion validation of the BGAS TDM within the
ICIMS system and its environment, by progres-
sively generating and consolidating interpretative
hypotheses given the evidence available in a case,
the classes of objects comprising the ICIMS TDM
may be re-implemented without disturbing any
parts of the system, and thus evolve into an
integrated intelligent monitoring and control
(IMC) TDM [35].

2.9. KBS integration validation

The ICIMS was developed within the routine
CCU clinical information processing environment
of the West Middlesex University Hospital and
constructively assessed during the development
process with regard to its information manage-
ment contribution and its usability. The system
was subsequently installed at the Mayday Uni-
versity Hospital intensive care unit where it auto-
matically collected data from a blood—gas
analyser via a serial connection to the measure-
ment instrument over a period of 6 months.
During this period the interpretations generated
by means of applying the TDM to the online data
were compared with those generated by the KBS
prototype. The validation performed during this
period confirmed that the integration process was
successful. In the process, ICIMS functioned both
as a valuable tool in the management of the vast
volume of clinical information generated by the
blood—gas analyser, as well as a platform for
demonstrating the usefulness of reading descrip-
tive and context-specific interpretations of numeric
acid—base status measurements.

Fig. 9 shows an example combined parameter-
and state-based trend display window, designed to
augment the effective information yield generated
by the patient record dialogues, and to provide the
means for a preliminary assessment of the user’s
requirements for the integration of the BGAS
TDM within the real-time information processing
activity supported by the ICIMS system. The
particular data set, which was selected from a
total of approximately 1,800 blood—gas measure-
ments taken from a total of 10 patients, corre-
sponds to a ventilated patient with renal
dysfunction during the period 12/2/96-7/3/96.
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Fig. 9. Sample high-level interpretative trend display patient summary window.

In combination, the two trend displays were
designed to provide further valuable clinical in-
formation management and decision support, in
that they can be used to detect changes in patient
state, and to distinguish those which merit patient-
state control attention from insignificant or erro-
neous indications, due to measurement, transcrip-
tion or execution errors. For example, the
measurement taken at 04:23 on the 14th of
February 1996 for the patient with acute renal
failure, may either be the result of a mechanical
ventilation execution error, a measurement or
transcription error, or a secondary acid—base
balance disorder. However, the measurement ta-
ken at 17:50 on the 20th of February appears to be
a misclassification error which, being part of an
on-going interpretative state—space trajectory, and
in conjunction with the superimposed parameter
trend, does not affect the validity of the decision
support generated by the system in as much as it
does in the case of consultation systems, such as
the BGAS prototype, which are required to give
the ‘correct’ answer to an interpretative problem.

3. Conclusions

Dealing with the increasing cost of health care
delivery and the detrimental consequences on the
quality and effectiveness of clinical outcome re-
quires supportive and corrective action to be taken
much closer to the source of the problem rather
than in pursuit of compromising costs and the
symptoms of an ailing financial control philoso-
phy. Computer-based medical data processing has
yielded methods and tools for managing the task
away from the hospital management level and
closer to the desired disease and patient manage-
ment level. During the past decade a number of
relevant methodologies have emerged, as dictated
by key qualitative cost—benefit control protocols,
and are rapidly disseminated into routine clinical
practice. However, the underlying information and
knowledge management technologies have failed
to be integrated into routine clinical practice. This
paper has described the development of a system
which has successfully overcome the main obstacle
encountered in the process of developing the
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required technological infrastructure: a system
that treats both information and knowledge as
clinical objects with same modelling requirements
and which, at the most fundamental level of
clinical decision support, facilitates both the orga-
nised acquisition of clinical information and
knowledge and provides a test-bed for the devel-
opment and evaluation of clinically useful and
effective knowledge-based decision support func-
tions. Future development efforts must be directed
towards the development and integration into the
online intelligent clinical information management
support system of the higher-level decision support
functions embodied in the practice of evidence-
based medicine.
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