Atomic operations at server
· first we consider the synchronisation of client operations without transactions

· when a server uses multiple threads it can perform several client operations concurrently

· if we allowed deposit and withdraw to run concurrently we could get inconsistent results

· objects should be designed for safe concurrent access e.g. in Java use synchronized methods, e.g.

· public synchronized void deposit(int amount) throws RemoteException

· atomic operations are free from interference from concurrent operations in other threads.

· use any available mutual exclusion mechanism (e.g. mutex)
Atomicity of transactions
· The atomicity has two aspects

1. All or nothing:

· it either completes successfully, and the effects of all of its operations are recorded in the objects, or (if it fails or is aborted) it has no effect at all. This all-or-nothing effect has two further aspects of its own:

· failure atomicity:

· the effects are atomic even when the server crashes;

· durability:

· after a transaction has completed successfully, all its effects are saved in permanent storage.

2. Isolation:

· Each transaction must be performed without interference from other transactions - there must be no observation by other transactions of a transaction's intermediate effects

