Failure model for transactions
· Lampson’s failure model deals with failures of disks, servers and communication.

· algorithms work correctly when predictable faults occur.

· but if a disaster occurs, we cannot say what will happen

· Writes to permanent storage may fail

· e.g. by writing nothing or a wrong value (write to wrong block is a disaster)

· reads can detect bad blocks by checksum

· Servers may crash occasionally.

· when a crashed server is replaced by a new process its memory is cleared and then it carries out a recovery procedure to get its objects’ state

· faulty servers are made to crash so that they do not produce arbitrary failures

· There may be an arbitrary delay before a message arrives.
A message may be lost, duplicated or corrupted.

· recipient can detect corrupt messages (by checksum)

· forged messages and undetected corrupt messages are disasters

Transactions

· Some applications require a sequence of client requests to a server to be atomic in the sense that:

1. they are free from interference by operations being performed on behalf of other concurrent clients; and

2. either all of the operations must be completed successfully or they must have no effect at all in the presence of server crashes.

· Transactions originate from database management systems

· Transactional file servers were built in the 1980s

· Transactions on distributed objects late 80s and 90s

· Middleware components e.g. CORBA Transaction service.

· Transactions apply to recoverable objects and are intended to be atomic.

Operations in the Coordinator interface
· transaction capabilities may be added to a server of recoverable objects

· each transaction is created and managed by a Coordinator object whose interface follows:

Transaction life histories
· A transaction is either successful (it commits)

· the coordinator sees that all objects are saved in permanent storage

· or it is aborted by the client or the server

· make all temporary effects invisible to other transactions

· how will the client know when the server has aborted its transaction
