Nested transactions
· transactions may be composed of other transactions

· several transactions may be started from within a transaction

· we have a top-level transaction and subtransactions which may have their own subtransactions

· To a parent, a subtransaction is atomic with respect to failures and concurrent access

· transactions at the same level (e.g. T1 and T2) can run concurrently but access to common objects is serialised

· a subtransaction can fail independently of its parent and other subtransactions

· when it aborts, its parent decides what to do, e.g. start another subtransaction or give up

· The CORBA transaction service supports both flat and nested transactions

Advantages of nested transactions (over flat ones)
· Subtransactions may run concurrently with other subtransactions at the same level.

· this allows additional concurrency in a transaction.

· when subtransactions run in different servers, they can work in parallel.

· e.g. consider the branchTotal operation

· it can be implemented by invoking getBalance at every account in the branch.

· these can be done in parallel when the branches have different servers

· Subtransactions can commit or abort independently.

· this is potentially more robust

· a parent can decide on different actions according to whether a subtransaction has aborted or not

Commitment of nested transactions
· A transaction may commit or abort only after its child transactions have completed.

· A subtransaction decides independently to commit provisionally or to abort. Its decision to abort is final.

· When a parent aborts, all of its subtransactions are aborted.

· When a subtransaction aborts, the parent can decide whether to abort or not.

· If the top-level transaction commits, then all of the subtransactions that have provisionally committed can commit too, provided that none of their ancestors has aborted.

Summary on transactions
· We consider only transactions at a single server, they are:

· atomic in the presence of concurrent transactions

· which can be achieved by serially equivalent executions

· atomic in the presence of server crashes

· they save committed state in permanent storage (recovery Ch.13)

· they use strict executions to allow for aborts

· they use tentative versions to allow for commit/abort

· nested transactions are structured from sub-transactions

· they allow concurrent execution of sub-transactions

· they allow independent recovery of sub-transactions

