Strict two-phase locking
· strict executions prevent dirty reads and premature writes (if transactions abort).

· a transaction that reads or writes an object must be delayed until other transactions that wrote the same object have committed or aborted.

· to enforce this, any locks applied during the progress of a transaction are held until the transaction commits or aborts.

· this is called strict two-phase locking

· For recovery purposes, locks are held until updated objects have been written to permanent storage

· granularity - apply locks to small things e.g. bank balances

· there are no assumptions as to granularity in the schemes we present
What decides whether a pair of operations conflict?

· concurrency control protocols are designed to deal with conflicts between operations in different transactions on the same object

· we describe the protocols in terms of read and write operations, which we assume are atomic

· read operations of different transactions do not conflict

· therefore exclusive locks reduce concurrency more than necessary

· The ‘many reader/ single writer’ scheme allows several transactions to read an object or a single transaction to write it (but not both)

· It uses read locks and write locks

· read locks are sometimes called shared locks

