Deadlocks
· Definition of deadlock

· deadlock is a state in which each member of a group of transactions is waiting for some other member to release a lock.

· a wait-for graph can be used to represent the waiting relationships between current transactions

Deadlock prevention is unrealistic
· e.g. lock all of the objects used by a transaction when it starts

· unnecessarily restricts access to shared resources.

· it is sometimes impossible to predict at the start of a transaction which objects will be used.

· Deadlock can also be prevented by requesting locks on objects in a predefined order

· but this can result in premature locking and a reduction in concurrency

Deadlock detection
· by finding cycles in the wait-for graph.

· after detecting a deadlock, a transaction must be selected to be aborted to break the cycle

· the software for deadlock detection can be part of the lock manager

· it holds a representation of the wait-for graph so that it can check it for cycles from time to time

· edges are added to the graph and removed from the graph by the lock manager’s setLock and unLock operations

· when a cycle is detected, choose a transaction to be aborted and then remove from the graph all the edges belonging to it

· it is hard to choose a victim - e.g. choose the oldest or the one in the most cycles

Increasing concurrency in locking schemes
· we omit this section which includes:

· two-version locking

· allows writing of tentative versions with reading of committed versions

· hierarchic locks

· e.g. the branchTotal operation locks all the accounts with one lock whereas the other operations lock individual accounts (reduces the number of locks needed)

