Timestamp
· each operation in a transaction is validated when it is carried out

· if an operation cannot be validated, the transaction is aborted

· each transaction is given a unique timestamp when it starts.

· The timestamp defines its position in the time sequence of transactions.

· requests from transactions can be totally ordered by their timestamps.

· basic timestamp ordering rule (based on operation conflicts)

· A request to write an object is valid only if that object was last read and written by earlier transactions.

· A request to read an object is valid only if that object was last written by an earlier transaction

· this rule assumes only one version of each object

· refine the rule to make use of the tentative versions

· to allow concurrent access by transactions to objects

Operation conflicts for timestamp ordering
· tentative versions are committed in the order of their timestamps (wait if necessary) but there is no need for the client to wait

· but read operations wait for earlier transactions to finish

· only wait for earlier ones (no deadlock)

· each read or write operation is checked with the conflict rules

Timestamp ordering write rule
· by combining rules 1 (write/read) and 2 (write/write)we have the following rule for deciding whether to accept a write operation requested by transaction Tc on object D

· rule 3 does not apply to writes

· by using Rule 3 we get the following rule for deciding what to do about a read operation requested by transaction Tc on object D. That is, whether to

· accept it immediately,

· wait or

· reject it
Transaction commits with timestamp ordering
· when a coordinator receives a commit request, it will always be able to carry it out because all operations have been checked for consistency with earlier transactions

· committed versions of an object must be created in timestamp order

· the server may sometimes need to wait, but the client need not wait

· to ensure recoverability, the server will save the ‘waiting to be committed versions’ in permanent storage

· the timestamp ordering algorithm is strict because

· the read rule delays each read operation until previous transactions that had written the object had committed or aborted

· writing the committed versions in order ensures that the write operation is delayed until previous transactions that had written the object have committed or aborted

Remarks on timestamp ordering concurrency control
· the method avoids deadlocks, but is likely to suffer from restarts

· modification known as ‘ignore obsolete write’ rule is an improvement

· If a write is too late it can be ignored instead of aborting the transaction, because if it had arrived in time its effects would have been overwritten anyway.

· However, if another transaction has read the object, the transaction with the late write fails due to the read timestamp on the item

· multiversion timestamp ordering (page 506)

· allows more concurrency by keeping multiple committed versions

· late read operations need not be aborted

· there is not time to discuss the method now

