Comparison of methods for concurrency control
· pessimistic approach (detect conflicts as they arise)

· timestamp ordering: serialisation order decided statically

· locking: serialisation order decided dynamically

· timestamp ordering is better for transactions where reads >> writes,

· locking is better for transactions where writes >> reads

· strategy for aborts

· timestamp ordering – immediate

· locking– waits but can get deadlock

· optimistic methods

· all transactions proceed, but may need to abort at the end

· efficient operations when there are few conflicts, but aborts lead to repeating work

· the above methods are not always adequate e.g.

· in cooperative work there is a need for user notification

· applications such as cooperative CAD need user involvement in conflict resolution

Summary

· Operation conflicts form a basis for the derivation of concurrency control protocols.

· protocols ensure serializability and allow for recovery by using strict executions

· e.g. to avoid cascading aborts

· Three alternative strategies are possible in scheduling an operation in a transaction:

· (1) to execute it immediately, (2) to delay it, or (3) to abort it

· strict two-phase locking uses (1) and (2), aborting in the case of deadlock

· ordering according to when transactions access common objects

· timestamp ordering uses all three - no deadlocks

· ordering according to the time transactions start.

· optimistic concurrency control allows transactions to proceed without any form of checking until they are completed.

· Validation is carried out. Starvation can occur.

