The two-phase commit protocol
· During the progress of a transaction, the only communication between coordinator and participant is the join request

· The client request to commit or abort goes to the coordinator

· if client or participant request abort, the coordinator informs the participants immediately

· if the client asks to commit, the 2PC comes into use

· 2PC

· voting phase: coordinator asks all participants if they can commit

· if yes, participant records updates in permanent storage and then votes

· completion phase: coordinator tells all participants to commit or abort

· the next slide shows the operations used in carrying out the protocol
· Time-out actions in the 2PC

· to avoid blocking forever when a process crashes or a message is lost

· uncertain participant (step 2) has voted yes. it can’t decide on its own

· it uses getDecision method to ask coordinator about outcome

· participant has carried out client requests, but has not had a Commit?from the coordinator. It can abort unilaterally

· coordinator delayed in waiting for votes (step 1). It can abort and send doAbort to participants.

Performance of the two-phase commit protocol
· if there are no failures, the 2PC involving N participants requires

· N canCommit? messages and replies, followed by N doCommit messages.

· the cost in messages is proportional to 3N, and the cost in time is three rounds of messages.

· The haveCommitted messages are not counted

· there may be arbitrarily many server and communication failures

· 2PC is guaranteed to complete eventually, but it is not possible to specify a time limit within which it will be completed

· delays to participants in uncertain state

· some 3PCs designed to alleviate such delays

· they require more messages and more rounds for the normal case

Two-phase commit protocol for nested transactions
· Recall Fig 14.1b, top-level transaction T and subtransactions T1, T2, T11, T12, T21, T22

· A subtransaction starts after its parent and finishes before it

· When a subtransaction completes, it makes an independent decision either to commit provisionally or to abort.

· A provisional commit is not the same as being prepared: it is a local decision and is not backed up on permanent storage.

· If the server crashes subsequently, its replacement will not be able to carry out a provisional commit.

· A two-phase commit protocol is needed for nested transactions

· it allows servers of provisionally committed transactions that have crashed to abort them when they recover.
Information held by coordinators of nested transactions
· When a top-level transcation commits it carries out a 2PC

· Each coordinator has a list of its subtransactions

· At provisional commit, a subtransaction reports its status and the status of its descendents to its parent

· If a subtransaction aborts, it tells its parent

