Timestamp ordering concurrency control
· Single server transactions

· coordinator issues a unique timestamp to each transaction before it starts

· serial equivalence ensured by committing objects in order of timestamps

· Distributed transactions

· the first coordinator accessed by a transaction issues a globally unique timestamp

· as before the timestamp is passed with each object access

· the servers are jointly responsible for ensuring serial equivalence

· that is if T access an object before U, then T is before U at all objects

· coordinators agree on timestamp ordering

· a timestamp consists of a pair <local timestamp, server-id>.

· the agreed ordering of pairs of timestamps is based on a comparison in which the server-id part is less significant – they should relate to time

· The same ordering can be achieved at all servers even if their clocks are not synchronized

· for efficiency it is better if local clocks are roughly synchronized

· then the ordering of transactions corresponds roughly to the real time order in which they were started

· Timestamp ordering

· conflicts are resolved as each operation is performed

· if this leads to an abort, the coordinator will be informed

· it will abort the transaction at the participants

· any transaction that reaches the client request to commit should always be able to do so

· participant will normally vote yes
· unless it has crashed and recovered during the transaction

