Optimistic concurrency control
· each transaction is validated before it is allowed to commit

· transaction numbers assigned at start of validation

· transactions serialized according to transaction numbers

· validation takes place in phase 1 of 2PC protocol

· consider the following interleavings of T and U
· T before U at X and U before T at Y
Commitment deadlock in optimistic concurrency control
· servers of distributed transactions do parallel validation

· therefore rule 3 must be validated as well as rule 2

· the write set of Tv is checked for overlaps with write sets of earlier transactions

· this prevents commitment deadlock

· it also avoids delaying the 2PC protocol

· another problem - independent servers may schedule transactions in different orders 

· e.g. T before U at X and U before T at Y
Distributed deadlocks
· Single server transactions can experience deadlocks

· prevent or detect and resolve

· use of timeouts is clumsy, detection is preferable. 

· it uses wait-for graphs.

· Distributed transactions lead to distributed deadlocks

· in theory can construct global wait-for graph from local ones

· a cycle in a global wait-for graph that is not in local ones is a distributed deadlock

Deadlock detection - local wait-for graphs
· Local wait-for graphs can be built, e.g. 

· server Y: U ( V  added when U requests b.withdraw(30) 

· server Z: V ( W  added when V requests c.withdraw(20)

· server X: W ( U  added when W requests a.withdraw(20)

· to find a global cycle, communication between the servers is needed

· centralized deadlock detection

· one server takes on role of global deadlock detector

· the other servers send it their local graphs from time to time

· it detects deadlocks, makes decisions about which transactions to abort and informs the other servers

· usual problems of a centralized service - poor availability, lack of fault tolerance and no ability to scale

· Phantom deadlocks

· a ‘deadlock’ that is detected, but is not really one

· happens when there appears to be a cycle, but one of the transactions has released a lock, due to time lags in distributing graphs

· in the figure suppose U releases the object at X then waits for V at Y

· and the global detector gets Y’s graph before X’s (T ( U ( V ( T)

Edge chasing - a distributed approach to deadlock detection
· a global graph is not constructed, but each server knows about some of the edges

· servers try to find cycles by sending probes which follow the edges of the graph through the distributed system

· when should a server send a probe (go back to Fig 14.13)

· edges were added in order U ( V at Y; V ( W  at Z and W ( U at X

· when W ( U at X  was added, U was waiting, but 

· when V ( W  at Z, W was not waiting

· send a probe when an edge T1 ( T2 when T2 is waiting

· each coordinator records whether its transactions are active or waiting

· the local lock manager tells coordinators if transactions start/stop waiting

· when a transaction is aborted to break a deadlock, the coordinator tells the participants, locks are removed and edges taken from wait-for graphs

Edge-chasing algorithms
· Three steps

· Initiation:

· When a server notes that T starts waiting for U, where U is waiting at another server, it initiates detection by sending a probe containing the edge < T ( U > to the server where  U is blocked. 

· If U is sharing a lock, probes are sent to all the holders of the lock.

· Detection:

· Detection consists of receiving probes and deciding whether deadlock has occurred and whether to forward the probes. 

· e.g. when server receives  probe < T ( U > it checks if U is waiting, e.g. U ( V, if so it forwards < T ( U ( V > to server where V waits

· when a server adds a new edge, it checks whether a cycle is there

· Resolution:

· When a cycle is detected, a transaction in the cycle is aborted to break the deadlock.

Edge chasing conclusion
· probe to detect a cycle with N transactions will require 2(N-1) messages. 

· Studies of databases show that the average deadlock involves 2 transactions.

· the above algorithm detects deadlock provided that

· waiting transactions do not abort

· no process crashes, no lost messages

· to be realistic it would need to allow for the above failures

· refinements of the algorithm (p 536-7)

· to avoid more than one transaction causing detection to start and then more than one being aborted 

· not time to study these now

Summary of concurrency control for distributed transactions
· each server is responsible for the serializability of transactions that access its own objects. 

· additional protocols are required to ensure that transactions are serializable globally. 

· timestamp ordering requires a globally agreed timestamp ordering 

· optimistic concurrency control requires global validation or a means of forcing a global ordering on transactions.

· two-phase locking can lead to distributed deadlocks. 

· distributed deadlock detection looks for cycles in the global wait-for graph.

· edge chasing is a non-centralized approach to the detection of distributed deadlocks

