What determines a particular phenotype?

Nature

versus

Nurture

All behavior is the product of an inextricable interaction between heredity and environment during development, so the answer to all nature-nurture questions is "some of each."

-Steven Pinker

Development of Behavior

Lecture objectives:

1. Understand that behavior is a product of gene-environment <u>interactions</u>

2. Be able to figure out whether differences in a behavior arise from genetic and/or environmental differences

3. Understand features of development and the adaptive value of learning

Behavior is a complex product of gene-environment interactions

Gene-env interactions underlie the development of honeybee foraging...

Effect of social environment:
When foragers (old bees)
are scarce, young bees will
rapidly become foragers

Example cont: Gene-env interactions underlie the development of honeybee foraging

Even learning has a genetic contribution

Gene-environment interactions Example:

Different species show different imprinting tendencies

What determines a particular phenotype?

Nature

Nurture

All behavior is the product of an inextricable interaction between heredity and environment during development, so the answer to all nature-nurture questions is "some of each."

-Steven Pinker

Development & learning require the

Lecture objectives:

Understand that behavior is a product of gene-environment <u>interactions</u>

2. Be able to figure out whether differences in a behavior arise from genetic and/or environmental differences

3. Understand features of development and the adaptive value of learning

Members of the same species often differ in behavior

What underlies <u>differences</u> in development/behavior?

- differences in genetic info?
- differences in environmental inputs?
- both?

Differences in development/behavior can arise from environmental differences

Idea:

Example: social behavior differences in paper wasps arise from early olfactory experiences

Differences in development/behavior can arise from genetic differences

Idea:

Example: "Good mommy" behavior differences in mice arise from genetic differences

Demonstrated by a

fosB → Expression is "knocked out"

WWW. ROWWOR Coats Edition Fours 2.17 0.200 Street Associates to

Example: Cotton collection differences in mice arise from genetic differences

Demonstrated by an

Lecture objectives:

1. Understand that behavior is a product of gene-environment interactions

2. Be able to figure out whether differences in a behavior arise from genetic and/or environmental differences

3. Understand features of development and the adaptive value of learning

"Normal" development is often robust, even under adverse genetic or environmental conditions

Genetic system likely has high informational redundancy

ANNAL BEHAVIOR, Eighth Edition, Figure 1.27 © 2005 Strauer Associates, Inc.

Rhesus monkeys develop normal social behavior with only 15 minutes of socialization/day

Sometimes there is more than one form of "normal" development (>1 discrete phenotype)

There are costs and benefits to learning

Adaptive modification of behavior based on experience

Costs: Benefits:

Natural selection favors investment in learning when the ability to learn confers reproductive advantages

The ability to learn would probably be beneficial for male thynnine wasps.

An animal's ability to learn certain associations or solve certain problems often makes biological sense

Example: Rats have an easy time learning certain associations and a hard time learning others

An animal's ability to learn certain associations or solve certain problems often makes biological sense

Example: Sex differences in spatial learning ability are linked to home range size

