WARNING:
JavaScript is turned OFF. None of the links on this concept map will
work until it is reactivated.
If you need help turning JavaScript On, click here.
Este Cmap, tiene información relacionada con: Aplicaciones, Aplicaciones ???? Interpolacion Segmentaria Cubica, Interpolación Segmentaria Lineal. Definicion La forma interpolar de una función f(x) de la que se nos dan un número N de pares (x,f(x)) por los que tendrá que pasar nuestra función polinómica P(x). Esta serie de funciones nuestras van a ser lineales, esto es, con grado 1: de la forma P(x) = ax + b., Splines cúbicos naturales: La forma más típica. La derivada segunda de P se hace 0 para el primer y último punto sobre el que está definido el conjunto de Splines, esto son, los puntos m y n en el intervalo [m,n]. Dar los valores de la derivada segunda de m y n de forma "manual", en el conjunto de splines definidos en el intervalo [m,n]. Hacer iguales los valores de la derivada segunda de m y n en el conjunto de splines definidos en el intervalo [m,n] Y Por Ultimo Utilizamos Splines cúbicos sujetos: La derivada primera de P debe tener el mismo valor que las derivada primera de la función para el primer y último punto sobre el que está definido el conjunto de Splines, esto son, los puntos m y n en el intervalo [m,n]., En este caso vamos a tener cuatro variables por cada intervalo (a,b,c,d), y una nueva condición para cada punto común a dos intervalos, respecto a la derivada segunda: Que las partes de la función a trozos P(x) pasen por ese punto. Es decir, que las dos Pn(x) que rodean al f(x) que queremos aproximar, sean igual a f(x) en cada uno de estos puntos. Que la derivada en un punto siempre coincida para ambos "lados" de la función definida a trozos que pasa por tal punto común. Que la derivada segunda en un punto siempre coincida para ambos "lados" de la función definida a trozos que pasa por tal punto común. deducirse al compararlo con el caso de splines cuadráticos, Para ello:, Para ello: determina el carácter de los splines cúbicos. Así, podemos usar:, Interpolacion Segmentaria Cubica Definicion Del Concepto En este caso, cada polinomio P(x) a través del que construimos los Splines en [m,n] tiene grado 3. Esto quiere decir, que va a tener la forma P(x) = ax³ + bx² + cx + d, Definiremos una de estas funciones por cada par de puntos adyacentes, hasta un total de (N-1) funciones, haciéndolas pasar obligatoriamente por los puntos que van a determinarlas, es decir, la función P(x) será el conjunto de segmentos que unen nodos consecutivos; es por ello que nuestra función será continua en dichos puntos, pero no derivable en general. Ejemplo= Interpolar con splines f(x)=1/x, en los puntos en los que x valen 1 2 y 4. f(1) = 1 f(2) = 0.5 f(4) = 0.25 El primer segmento P1(x) = ax + b deberá unir los primeros dos puntos de coordenadas (1,1) y (0.5,2). Surge un sistema lineal de dos ecuaciones en dos incógnitas: (1) 1=a+b (2) 0.5=2a+b, En este caso, los polinomios P(x) a través de los que construimos el Spline tienen grado 2. Esto quiere decir, que va a tener la forma P(x) = ax² + bx + c ???? Como en la interpolación segmentaria lineal, vamos a tener N-1 ecuaciones (donde N son los puntos sobre los que se define la función). La interpolación cuadrática nos va a asegurar que la función que nosotros generemos a trozos con los distintos P(x) va a ser continua, ya que para sacar las condiciones que ajusten el polinomio, vamos a determinar como condiciones: Que las partes de la función a trozos P(x) pasen por ese punto. Es decir, que las dos Pn(x) que rodean al f(x) que queremos aproximar, sean igual a f(x) en cada uno de estos puntos. Que la derivada en un punto siempre coincida para ambos "lados" de la función definida a trozos que pasa por tal punto común., En este caso, cada polinomio P(x) a través del que construimos los Splines en [m,n] tiene grado 3. Esto quiere decir, que va a tener la forma P(x) = ax³ + bx² + cx + d ???? En este caso vamos a tener cuatro variables por cada intervalo (a,b,c,d), y una nueva condición para cada punto común a dos intervalos, respecto a la derivada segunda: Que las partes de la función a trozos P(x) pasen por ese punto. Es decir, que las dos Pn(x) que rodean al f(x) que queremos aproximar, sean igual a f(x) en cada uno de estos puntos. Que la derivada en un punto siempre coincida para ambos "lados" de la función definida a trozos que pasa por tal punto común. Que la derivada segunda en un punto siempre coincida para ambos "lados" de la función definida a trozos que pasa por tal punto común., f(1) = 1 f(2) = 0.5 f(4) = 0.25 El primer segmento P1(x) = ax + b deberá unir los primeros dos puntos de coordenadas (1,1) y (0.5,2). Surge un sistema lineal de dos ecuaciones en dos incógnitas: (1) 1=a+b (2) 0.5=2a+b ???? De (1) se obtiene: a=1-b (3) Reemplazando (3) en (2) se obtiene: 0.5=2(1-b)+b luego b=1.5 Reemplazando el valor de (b) en (1), se obtiene: a = - 0.5, Aplicaciones ???? Interpolacion Segmentaria Cuadratica, Como en la interpolación segmentaria lineal, vamos a tener N-1 ecuaciones (donde N son los puntos sobre los que se define la función). La interpolación cuadrática nos va a asegurar que la función que nosotros generemos a trozos con los distintos P(x) va a ser continua, ya que para sacar las condiciones que ajusten el polinomio, vamos a determinar como condiciones: Que las partes de la función a trozos P(x) pasen por ese punto. Es decir, que las dos Pn(x) que rodean al f(x) que queremos aproximar, sean igual a f(x) en cada uno de estos puntos. Que la derivada en un punto siempre coincida para ambos "lados" de la función definida a trozos que pasa por tal punto común. ???? sin embargo no es suficiente, y necesitamos una condición más. ¿Por qué?, Aplicaciones ???? Interpolación Segmentaria Lineal., Así, podemos usar: ???? Splines cúbicos naturales: La forma más típica. La derivada segunda de P se hace 0 para el primer y último punto sobre el que está definido el conjunto de Splines, esto son, los puntos m y n en el intervalo [m,n]. Dar los valores de la derivada segunda de m y n de forma "manual", en el conjunto de splines definidos en el intervalo [m,n]. Hacer iguales los valores de la derivada segunda de m y n en el conjunto de splines definidos en el intervalo [m,n], La forma interpolar de una función f(x) de la que se nos dan un número N de pares (x,f(x)) por los que tendrá que pasar nuestra función polinómica P(x). Esta serie de funciones nuestras van a ser lineales, esto es, con grado 1: de la forma P(x) = ax + b. Ahora Definiremos una de estas funciones por cada par de puntos adyacentes, hasta un total de (N-1) funciones, haciéndolas pasar obligatoriamente por los puntos que van a determinarlas, es decir, la función P(x) será el conjunto de segmentos que unen nodos consecutivos; es por ello que nuestra función será continua en dichos puntos, pero no derivable en general., sin embargo no es suficiente, y necesitamos una condición más. ¿Por qué? ???? Tenemos 3 incógnitas por cada P(x). En un caso sencillo con f(x) definida en tres puntos y dos ecuaciones P(x) para aproximarla, vamos a tener seis incógnitas en total. Para resolver esto necesitaríamos seis ecuaciones, pero vamos a tener tan sólo cinco: cuatro que igualan el P(x) con el valor de f(x) en ese punto (dos por cada intervalo), y la quinta al igualar la derivada en el punto común a las dos P(x)., De (1) se obtiene: a=1-b (3) Reemplazando (3) en (2) se obtiene: 0.5=2(1-b)+b luego b=1.5 Reemplazando el valor de (b) en (1), se obtiene: a = - 0.5 ???? Por lo tanto, se concluye que: P1(x) = - 0.5x + 1.5 El segundo segmento P2(x) = ax + b deberá unir el segundo punto (0.5,2) con el tercer punto (0.25,4). Análogamente a lo hecho para P1(x), en el caso de P2(x) se obtiene: (1) 0.5 = 2a + b (2) 0.25 = 4a + b a = - 0.125, b = 0.75 Luego P2(x) = - 0.125x + 0.75, Interpolacion Segmentaria Cuadratica Veamos El siguinte Caso Para los Polinomios En este caso, los polinomios P(x) a través de los que construimos el Spline tienen grado 2. Esto quiere decir, que va a tener la forma P(x) = ax² + bx + c