

Cambridge Lower Secondary Sample Test For use with curriculum published in September 2020

Mathematics Paper 2

Stage 8

1 hour

Name	

Additional materials: Calculator

Geometrical instruments Tracing paper (optional)

INSTRUCTIONS

- Answer all questions.
- Write your answer to each question in the space provided.
- You should show all your working on the question paper.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 50.
- The number of marks for each question or part question is shown in brackets [].

1	A café has three different colours of plates in the ratio	
	grey: white: black = 3:8:5	
	The café has 304 plates altogether.	
	Work out how many grey plates the café has.	
		[2]
2	Eind the number of kilometres enquesimetals equivalent to 20 miles	
2	Find the number of kilometres approximately equivalent to 30 miles.	
	km	[1]
3	(a) The password for a laptop is one of the five shown.	
	245tcb3 541tcb2 315tcc1 924tcc5 815tce2	
	Angelique says the probability the password contains the letter b is $\frac{1}{5}$	
	Tick (✓) to show if Angelique is correct or not correct.	
	correct not correct	
	Explain your answer.	
	Explain your answer.	
		[1]
		-1
	(b) The code for Angelique's phone is four different digits from 1 to 9 The first digit is 6 and the other three digits are even.	
	Write a list of all the possible four-digit codes for Angelique's phone.	
	a list of an are possible four sign codes for ringerique s phone.	
		[2]

			3			
4	Hassan buys an apartment After one year the value d		7%.			
	Work out the new value o	f Hassan's ap	artment.			
				\$		[2]
5	Rearrange $p = \frac{m}{3}$ to ma	ke m the subject	ect.			
	, and the second					
				<i>m</i> =		[1]
6	Draw a ring around all the	e fractions tha	t are equivaler	nt to recurring	decimals.	
	$\frac{1}{3}$	$\frac{1}{5}$	$\frac{1}{7}$	$\frac{1}{8}$		
	5	2	,	Ü		

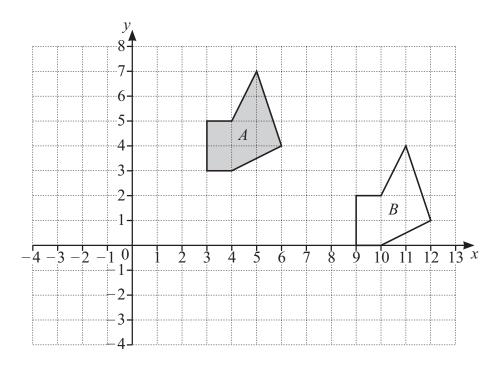
7 x is a whole number.

 $x \ge 0.5$

Write down the **smallest** possible value of x.

$$x =$$
 [1]

[1]


8	(a) The <i>n</i> th term of	of a sequence is 15 -	$-\frac{n}{2}$		
		8th term of the seque	_		
					[1]
	(b) The first five t	erms of a different se	equence are		
	1, 6, 11, 10	6, 21,			
	Work out the i	th term of this seque	nce.		
					[2]
9	Here are some wor	rds describing parts o	f the expression $3x$	+ 5	
	coefficient	constant	variable	term	
	Use each word one	ce to complete the sta	tements.		
	wis		5 ia a		
	x is a		3 IS a		
	3 is the	of	fx 3x is a		
					[1]

			5			
10	Safia is investiga	ating how the number	r of websites in	the world has c	hanged over time.	
	(a) In the year 19	999 there were 3 177	453 websites.			
	Write this nu	umber of websites co	errect to 2 signif	ficant figures.		
						[1]
						[1]
	(b) The graph sh	nows the number of v	websites betwee	en the years 200	4 and 2018	
	Number of websites (millions)	2000 A 1800				
		200 2004 2006	2008 2010	2012 2014	2016 2018	
			Y	Year		
	(i) Write do	wn the first year tha	it the number of		ed over 200 million.	[1]
	(ii) Write do websites.	own the two consecu	itive years with			
				and		[1]
	(c) In 1991 there In 1992 there	e was 1 website.				

Work out the percentage change in the number of websites from 1991 to 1992

0/2	Г17
/0	Γī]

11 (a) The diagram shows two shapes, A and B, drawn on a grid.

(i) Reflect shape A in the line y = 2

[2]

(ii) Write down the vector that translates shape A onto shape B.

(b) On a different grid shape C is translated to shape D by vector $\begin{pmatrix} -11 \\ -14 \end{pmatrix}$

Write down the vector that translates shape D onto shape C.

12	Ex	pand	and	sim	plify	7.

$$5x + 3x(4 - 2x)$$

					_	_				_						_	_											_									_		_				_						I	[2	2		
--	--	--	--	--	---	---	--	--	--	---	--	--	--	--	--	---	---	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	---	--	---	--	--	--	---	--	--	--	--	--	---	---	---	---	--	--

13 (a) Lily draws the graph of y = 2x

Write down the coordinates of two points that will be on this line.

-	() and	()	Г1 Ъ	ı
١	,	j anu	(,	,	l T	ı

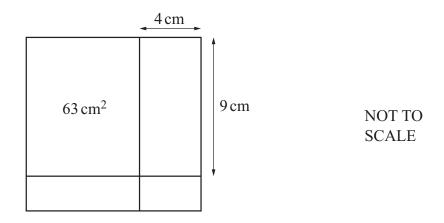
(b) Lily then draws the line y = x + 2

Write these coordinates in the correct place in the table. One has been done for you.

$$(0, -2)$$

$$(0,-2)$$
 $(-3,-1)$ $(0,0)$

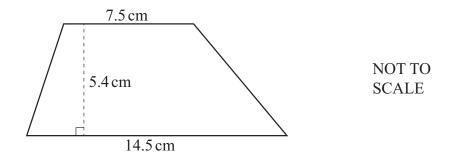
$$(-2, 0)$$


	On the line $y = x + 2$	Not on the line $y = x + 2$
Above the <i>x</i> -axis	(1, 3)	
Below the <i>x</i> -axis		
On the x-axis		

[2]

14 (a) The diagram shows a square.

The square is cut into four rectangles by two straight lines.


The area of the largest rectangle is $63 \,\mathrm{cm}^2$.

Work out the area of the smallest rectangle.

cm ²	[2]

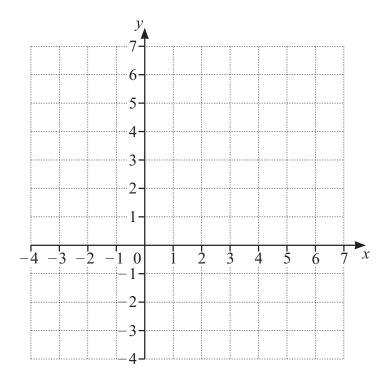
(b) The diagram shows a trapezium.

Calculate the area of the trapezium.

cm ²	[2]

15 A 3D shape has 12 vertices and 30 edges.

Work out the number of faces on this shape.

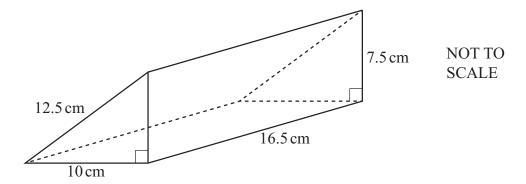

[1]

16 (a) Complete the table of values for y = 2x - 1

х	-1		3
у		-1	

[2]

(b) On the grid, draw the graph of y = 2x - 1


[2]

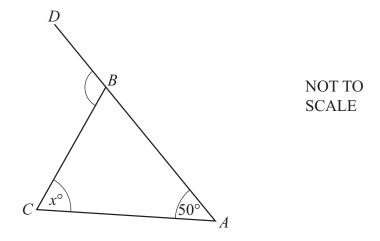
17	The wheel of a bicycle has a real The bicycle travels 400 m.	radius of 33	cm.			
	Work out the number of times Give your answer correct to the				ice.	
						[3]
18	Rajiv does an experiment with He rolls each dice a total of 60			•	imes he roll	s the number 6
	Dice	A	В	С	D	
	Number of times 6 is rolled	12	11	17	9	

Write down the letter of the dice that is most likely **not** to be fair.

[1]

19 The diagram shows a solid triangular prism made of metal.

The cross-section is a right-angled triangle. The prism is melted and made into cubes of side length 2.4 cm.

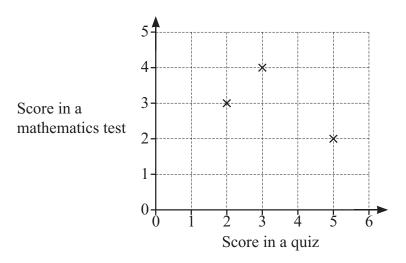

Find the total number of whole cubes that can be made.

20	(a)	A quadrilateral contains at least	one right angle a	and exactly	two equal	angles.
		One of the angles in the quadrila	iteral is 70°.			

Complete these sentences.

One set of possible angles in the quadrilateral is					
70°,	······································	° and	0		
A different se	et of possible angles i	in the quadrilateral is			
70°,	· ,	° and	0		
				[2]	

(b) The diagram shows a triangle *ABC*. *ABD* is a straight line.


Write down an expression, in terms of x, for the angle CBD.

0	[1]

21 Mike is investigating to see if there is a relationship between the score in a quiz and the score in a mathematics test for people in his class.

He collects data from 3 people out of his class of 30

He then draws this scatter graph.

(a)	a) Mike says, A higher score in the quiz means a higher score in the mathematics test.					
	Explain how Mike can improve his investigation to	see if this is true	e.			
				[1]		
(b)	Tick (\checkmark) to show if each statement about lines of befalse.	oest fit in a scatt	er graph are true	e o		
	Lines of best fit must always					
		True	False			
	go through the origin					
	have a positive gradient					
	pass as close as possible to the points					

[1]

BLANK PAGE

Copyright © UCLES, 2020
Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.